Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1976 Mar;39(3):212–217. doi: 10.1136/jnnp.39.3.212

Mortality and cerebral metabolism after bilateral carotid artery ligation in normotensive and spontaneously hypertensive rats.

M Fujishima, J Ogata, T SUGI, T Omae
PMCID: PMC492257  PMID: 6630

Abstract

Mortality and cerebral glycolytic metabolism were studied after bilateral ligation of the common carotid artery in normotensive Wistar rats (NTR), and spontaneously hypertensive rats (SHR) derived from Wistar strain. In the first 24 hours after occlusion of carotid arteries, 72 per cent of 108 SHR died, whereas it was fatal in only 16 per cent of 43 NTR. In SHR, cerebral lactate and cerebral lactate/pyruvate ratio (L/P ratio) increased by 12.4 and 12.1 times the control, respectively at five to six hours after ligation, and remained raised even in rats surviving for two to three days thereafter. Changes in cerebral lactate and L/P ratio were minimal in NTR. Cerebral ATP decreased markedly at five to six hours after ligation in SHR studied. These results indicate that bilateral carotid artery ligation causes severe brain damage in SHR but not in NTR, suggesting hypertension per se to be operative for the development of cerebral ischaemia.

Full text

PDF
212

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fujishima M., Ogata J., Morotomi Y., Omae T. Proceedings: Effects of bilateral carotid artery ligation on brain metabolism in spontaneously hypertensive and normotensive rats. Jpn Heart J. 1975 May;16(3):316–318. doi: 10.1536/ihj.16.316. [DOI] [PubMed] [Google Scholar]
  2. Fujishima M., Sugi T., Morotomi Y., Omae T. Effects of bilateral carotid artery ligation on brain lactate and pyruvate concentrations in normotensive and spontaneously hypertensive rats. Stroke. 1975 Jan-Feb;6(1):62–66. doi: 10.1161/01.str.6.1.62. [DOI] [PubMed] [Google Scholar]
  3. Harrison M. J., Brownbill D., Lewis P. D., Russell R. W. Cerebral edema following carotid artery ligation in the gerbil. Arch Neurol. 1973 Jun;28(6):389–391. doi: 10.1001/archneur.1973.00490240049008. [DOI] [PubMed] [Google Scholar]
  4. Harrison M. J., Russell R. W. Effect of dexamethasone on experimental cerebral infarction in the gerbil. J Neurol Neurosurg Psychiatry. 1972 Aug;35(4):520–521. doi: 10.1136/jnnp.35.4.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kahn K. The natural course of experimental cerebral infarction in the gerbil. Neurology. 1972 May;22(5):510–515. doi: 10.1212/wnl.22.5.510. [DOI] [PubMed] [Google Scholar]
  6. Kannel W. B., Wolf P. A., Verter J., McNamara P. M. Epidemiologic assessment of the role of blood pressure in stroke. The Framingham study. JAMA. 1970 Oct 12;214(2):301–310. [PubMed] [Google Scholar]
  7. LEVINE S. Anoxic-ischemic encephalopathy in rats. Am J Pathol. 1960 Jan;36:1–17. [PMC free article] [PubMed] [Google Scholar]
  8. Levine S., Payan H. Effects of ischemia and other procedures on the brain and retina of the gerbil (Meriones unguiculatus). Exp Neurol. 1966 Nov;16(3):255–262. doi: 10.1016/0014-4886(66)90062-8. [DOI] [PubMed] [Google Scholar]
  9. Levine S., Sohn D. Cerebral ischemia in infant and adult gerbils. Relation to incomplete circle of Willis. Arch Pathol. 1969 Mar;87(3):315–317. [PubMed] [Google Scholar]
  10. Levy D. E., Brierley J. B. Communications between vertebro-basilar and carotid arterial circulations in the gerbil. Exp Neurol. 1974 Dec;45(3):503–508. doi: 10.1016/0014-4886(74)90155-1. [DOI] [PubMed] [Google Scholar]
  11. OKAMOTO K., AOKI K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963 Mar;27:282–293. doi: 10.1253/jcj.27.282. [DOI] [PubMed] [Google Scholar]
  12. Salford L. G., Plum F., Siesjö B. K. Graded hypoxia-oligemia in rat brain. I. Biochemical alterations and their implications. Arch Neurol. 1973 Oct;29(4):227–233. doi: 10.1001/archneur.1973.00490280039005. [DOI] [PubMed] [Google Scholar]
  13. Salford L. G., Siesjö B. K. The influence of arterial hypoxia and unilateral carotid artery occlusion upon regional blood flow and metabolism in the rat brain. Acta Physiol Scand. 1974 Sep;92(1):130–141. doi: 10.1111/j.1748-1716.1974.tb05729.x. [DOI] [PubMed] [Google Scholar]
  14. Spector R. G. Content of lactic acid and adenosine mono-, di- and tri-phosphates in anoxic-ischaemic rat brain. J Pathol Bacteriol. 1965 Oct;90(2):533–541. doi: 10.1002/path.1700900221. [DOI] [PubMed] [Google Scholar]
  15. Strandgaard S., Olesen J., Skinhoj E., Lassen N. A. Autoregulation of brain circulation in severe arterial hypertension. Br Med J. 1973 Mar 3;1(5852):507–510. doi: 10.1136/bmj.1.5852.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Takahashi K. Relationship between acidity and swelling in the brain. Tohoku J Exp Med. 1966 Nov;90(3):261–268. doi: 10.1620/tjem.90.261. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES