Abstract
In most mammals, the superior olive is the first stage for binaural interaction. Neurons in the medial superior olive (MSO) receive excitatory input from both ears and are sensitive to interaural time or phase differences of low-frequency sounds. The mustached bat (Pteronotus parnellii parnellii), a small echolocating species with high-frequency hearing, probably does not use interaural time or phase differences as cues for sound localization. Although the mustached bat has a large MSO, there is some evidence that it is functionally different from the MSO in nonecholocating mammals. Most MSO neurons in the mustached bat are monaural, excited by a contralateral sound. Their responses are phasic and correlated with either the onset or the offset of a sound. As a first step in determining the origin of these phasic monaural responses, we traced the connections of the MSO by using both retrograde and anterograde transport methods. Excitatory inputs to the MSO originate from spherical cells in the anteroventral cochlear nucleus, almost exclusively from the contralateral side. Glycinergic inhibitory input is relayed from the contralateral cochlear nucleus through the medial nucleus of the trapezoid body. To investigate the interactions of the contralateral excitatory and inhibitory inputs at the level of the MSO cell, we recorded sound-evoked responses and applied glycine or its antagonist by using microiontophoresis. The results show that the phasic response to a contralateral sound is created by interaction of a sustained excitatory input with a sustained inhibitory input, also from the contralateral ear. Whether the response is to the onset or offset of a sound is determined by the relative timing between the excitatory and inhibitory inputs. Thus, in MSO of the mustached bat, the ipsilateral excitatory pathway from the cochlear nucleus seen in animals with low-frequency hearing is virtually absent, and the MSO is adapted for timing analysis by using input from only the contralateral ear.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams J. C., Mugnaini E. Immunocytochemical evidence for inhibitory and disinhibitory circuits in the superior olive. Hear Res. 1990 Nov;49(1-3):281–298. doi: 10.1016/0378-5955(90)90109-3. [DOI] [PubMed] [Google Scholar]
- Caird D., Klinke R. Processing of binaural stimuli by cat superior olivary complex neurons. Exp Brain Res. 1983;52(3):385–399. doi: 10.1007/BF00238032. [DOI] [PubMed] [Google Scholar]
- Casseday J. H., Covey E., Vater M. Connections of the superior olivary complex in the rufous horseshoe bat Rhinolophus rouxi. J Comp Neurol. 1988 Dec 15;278(3):313–329. doi: 10.1002/cne.902780302. [DOI] [PubMed] [Google Scholar]
- Covey E., Vater M., Casseday J. H. Binaural properties of single units in the superior olivary complex of the mustached bat. J Neurophysiol. 1991 Sep;66(3):1080–1094. doi: 10.1152/jn.1991.66.3.1080. [DOI] [PubMed] [Google Scholar]
- Crow G., Rupert A. L., Moushegian G. Phase locking in monaural and binaural medullary neurons: implications for binaural phenomena. J Acoust Soc Am. 1978 Aug;64(2):493–501. doi: 10.1121/1.381999. [DOI] [PubMed] [Google Scholar]
- Goldberg J. M., Brown P. B. Functional organization of the dog superior olivary complex: an anatomical and electrophysiological study. J Neurophysiol. 1968 Jul;31(4):639–656. doi: 10.1152/jn.1968.31.4.639. [DOI] [PubMed] [Google Scholar]
- Goldberg J. M., Brown P. B. Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol. 1969 Jul;32(4):613–636. doi: 10.1152/jn.1969.32.4.613. [DOI] [PubMed] [Google Scholar]
- Harnischfeger G., Neuweiler G., Schlegel P. Interaural time and intensity coding in superior olivary complex and inferior colliculus of the echolocating bat Molossus ater. J Neurophysiol. 1985 Jan;53(1):89–109. doi: 10.1152/jn.1985.53.1.89. [DOI] [PubMed] [Google Scholar]
- Harrison J. M., Irving R. Visual and nonvisual auditory systems in mammals. Anatomical evidence indicates two kinds of auditory pathways and suggests two kinds of hearing in mammals. Science. 1966 Nov 11;154(3750):738–743. doi: 10.1126/science.154.3750.738. [DOI] [PubMed] [Google Scholar]
- Havey D. C., Caspary D. M. A simple technique for constructing 'piggy-back' multibarrel microelectrodes. Electroencephalogr Clin Neurophysiol. 1980 Feb;48(2):249–251. doi: 10.1016/0013-4694(80)90313-2. [DOI] [PubMed] [Google Scholar]
- Inbody S. B., Feng A. S. Binaural response characteristics of single neurons in the medial superior olivary nucleus of the albino rat. Brain Res. 1981 Apr 6;210(1-2):361–366. doi: 10.1016/0006-8993(81)90910-0. [DOI] [PubMed] [Google Scholar]
- Masterton B., Thompson G. C., Bechtold J. K., RoBards M. J. Neuroanatomical basis of binaural phase-difference analysis for sound localization: a comparative study. J Comp Physiol Psychol. 1975 Jul;89(5):379–386. doi: 10.1037/h0077034. [DOI] [PubMed] [Google Scholar]
- Moore M. J., Caspary D. M. Strychnine blocks binaural inhibition in lateral superior olivary neurons. J Neurosci. 1983 Jan;3(1):237–242. doi: 10.1523/JNEUROSCI.03-01-00237.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moushegian G., Rupert A. L., Gidda J. S. Functional characteristics of superior olivary neurons to binaural stimuli. J Neurophysiol. 1975 Sep;38(5):1037–1048. doi: 10.1152/jn.1975.38.5.1037. [DOI] [PubMed] [Google Scholar]
- Rouiller E. M., Ryugo D. K. Intracellular marking of physiologically characterized cells in the ventral cochlear nucleus of the cat. J Comp Neurol. 1984 May 10;225(2):167–186. doi: 10.1002/cne.902250203. [DOI] [PubMed] [Google Scholar]
- Smith P. H., Joris P. X., Carney L. H., Yin T. C. Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J Comp Neurol. 1991 Feb 15;304(3):387–407. doi: 10.1002/cne.903040305. [DOI] [PubMed] [Google Scholar]
- Smith P. H., Rhode W. S. Characterization of HRP-labeled globular bushy cells in the cat anteroventral cochlear nucleus. J Comp Neurol. 1987 Dec 15;266(3):360–375. doi: 10.1002/cne.902660305. [DOI] [PubMed] [Google Scholar]
- Spangler K. M., Warr W. B., Henkel C. K. The projections of principal cells of the medial nucleus of the trapezoid body in the cat. J Comp Neurol. 1985 Aug 15;238(3):249–262. doi: 10.1002/cne.902380302. [DOI] [PubMed] [Google Scholar]
- Spirou G. A., Brownell W. E., Zidanic M. Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. J Neurophysiol. 1990 May;63(5):1169–1190. doi: 10.1152/jn.1990.63.5.1169. [DOI] [PubMed] [Google Scholar]
- Vater M., Feng A. S. Functional organization of ascending and descending connections of the cochlear nucleus of horseshoe bats. J Comp Neurol. 1990 Feb 15;292(3):373–395. doi: 10.1002/cne.902920305. [DOI] [PubMed] [Google Scholar]
- Yin T. C., Chan J. C. Interaural time sensitivity in medial superior olive of cat. J Neurophysiol. 1990 Aug;64(2):465–488. doi: 10.1152/jn.1990.64.2.465. [DOI] [PubMed] [Google Scholar]
- Zook J. M., Casseday J. H. Cytoarchitecture of auditory system in lower brainstem of the mustache bat, Pteronotus parnellii. J Comp Neurol. 1982 May 1;207(1):1–13. doi: 10.1002/cne.902070102. [DOI] [PubMed] [Google Scholar]