Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1976 Dec;39(12):1191–1200. doi: 10.1136/jnnp.39.12.1191

Spinal reflexes and the concentrations of 5-HIAA, MHPG, and HVA in lumbar cereborspinal fluid after spinal lesions in man.

P Ashby, M Verrier, J J Warsh, K S Price
PMCID: PMC492564  PMID: 1011029

Abstract

Descending bulbospinal pathways that employ specific neurotransmitter substances are known to be capable of modulating segmental reflex activity in the experimental animal. To determine whether this might also occur in man correlations have been sought between the activity in spinal reflex pathways and the lumbar cerebrospinal fluid (CSF) concentrations of 5-hydroxyindolacetic acid (5-HIAA), 3 methoxy-4-hydroxyphenylglycol (MHPG), and homovanillic acid (HVA) in 12 patients with complete or virtually complete spinal lesions. The concentrations of 5-HIAA and MHPG in lumbar CSF ARE REDUCED AFTER COMPLETE OR VIRTUALLY COMPLETE SPINAL LESIONS IN MAN. This may occur within 18 days of the lesion. MHPG concentrations appear to be inversely related to the level of the lesion. The HVA concentration in lumbar CSF is reduced when there is obstruction of the CSF pathways. No relationship could be demonstrated between the concentrations of 5-HIAA or MHPG in lumbar CSF and the activity in the spinal monosynaptic pathway (estimated from the proportion of the motoneurone pool activated by the Achilles tendon reflex or H reflex) or the activity of a spinal inhibitory mechanism (estimated by the degree of vibratory inhibition of the monosynaptic reflex). Patients with a tonic vibration reflex (TVR) tended to have higher MHPG levels. There appeared to be an association between low CSF HVA and enhanced vibratory inhibition of the monosynaptic reflex in the nine patients whose spinal lesions were complete.

Full text

PDF
1191

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDEN N. E., JUKES M. G., LUNDBERG A. SPINAL REFLEXES AND MONOAMINE LIBERATION. Nature. 1964 Jun 20;202:1222–1223. doi: 10.1038/2021222a0. [DOI] [PubMed] [Google Scholar]
  2. ANDEN N. E., JUKES M. G., LUNDBERG A., VYKLICKY L. A NEW SPINAL FLEXOR REFLEX. Nature. 1964 Jun 27;202:1344–1345. doi: 10.1038/2021344b0. [DOI] [PubMed] [Google Scholar]
  3. Ahlman H., Grillner S., Udo M. The effect of 5-HTP on the static fusimotor activity and the tonic stretch reflex of an extensor muscle. Brain Res. 1971 Apr 2;27(2):393–396. doi: 10.1016/0006-8993(71)90269-1. [DOI] [PubMed] [Google Scholar]
  4. Anderson E. G. Bulbospinal serotonin-containing neurons and motor control. Fed Proc. 1972 Jan-Feb;31(1):107–112. [PubMed] [Google Scholar]
  5. Andén N. E. Distribution of monoamines and dihydroxyphenylalanine decarboxylase activity in the spinal cord. Acta Physiol Scand. 1965 Jul;64(3):197–203. doi: 10.1111/j.1748-1716.1965.tb04168.x. [DOI] [PubMed] [Google Scholar]
  6. Andén N. E., Jukes M. G., Lundberg A. The effect of DOPA on the spinal cord. 2. A pharmacological analysis. Acta Physiol Scand. 1966 Jul-Aug;67(3):387–397. doi: 10.1111/j.1748-1716.1966.tb03325.x. [DOI] [PubMed] [Google Scholar]
  7. Andén N. E., Jukes M. G., Lundberg A., Vyklický L. The effect of DOPA on the spinal cord. 1. Influence on transmission from primary afferents. Acta Physiol Scand. 1966 Jul-Aug;67(3):373–386. doi: 10.1111/j.1748-1716.1966.tb03324.x. [DOI] [PubMed] [Google Scholar]
  8. Ashby P., Verrier M. Neurophysiological changes following spinal cord lesions in man. Can J Neurol Sci. 1975 May;2(2):91–100. doi: 10.1017/s0317167100020060. [DOI] [PubMed] [Google Scholar]
  9. Baker R. G., Anderson E. G. The effects of L-3,4-dihydroxyphenylalanine on spinal reflex activity. J Pharmacol Exp Ther. 1970 May;173(1):212–223. [PubMed] [Google Scholar]
  10. Bergmans J., Grillner S. Reciprocal control of spontaneous activity and reflex effects in static and dynamic flexor gamma-motoneurones revealed by an injection of DOPA. Acta Physiol Scand. 1969 Sep-Oct;77(1):106–124. doi: 10.1111/j.1748-1716.1969.tb04557.x. [DOI] [PubMed] [Google Scholar]
  11. Bond P. A. The determination of 4-hydroxy-3-methoxyphenylethylene glycol in urine and CSF using gas chromatography. Biochem Med. 1972 Feb;6(1):36–45. doi: 10.1016/0006-2944(72)90057-9. [DOI] [PubMed] [Google Scholar]
  12. Bulat M., Lacković Z., Jakupcevic M., Damjanov I. 5-Hydroxyindoleacetic acid in the lumbar fluid: a specific indicator of spinal cord injury. Science. 1974 Aug 9;185(4150):527–528. doi: 10.1126/science.185.4150.527. [DOI] [PubMed] [Google Scholar]
  13. Chase T. N., Gordon E. K., Ng L. K. Norepinephrine metabolism in the central nervous system of man: studies using 3-methoxy-4-hydroxyphenylethylene glycol levels in cerebrospinal fluid. J Neurochem. 1973 Sep;21(3):581–587. doi: 10.1111/j.1471-4159.1973.tb06003.x. [DOI] [PubMed] [Google Scholar]
  14. Curzon G. CSF homovanillic acid: an index of dopaminergic activity. Adv Neurol. 1975;9:349–357. [PubMed] [Google Scholar]
  15. Curzon G., Gumpert E. J., Sharpe D. M. Amine metabolites in the lumbar cerebrospinal fluid of humans with restricted flow of cerebrospinal fluid. Nat New Biol. 1971 Jun 9;231(23):189–191. doi: 10.1038/newbio231189a0. [DOI] [PubMed] [Google Scholar]
  16. Ellaway P. H., Trott J. R. The mode of action of 5-hydroxytryptophan in facilitating a stretch reflex in the spinal cat. Exp Brain Res. 1975;22(2):145–162. doi: 10.1007/BF00237685. [DOI] [PubMed] [Google Scholar]
  17. Garelis E., Sourkes T. L. Sites of origin in the central nervous system of monoamine metabolites measured in human cerebrospinal fluid. J Neurol Neurosurg Psychiatry. 1973 Aug;36(4):625–629. doi: 10.1136/jnnp.36.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Garelis E., Young S. N., Lal S., Sourkes T. L. Monoamine metabolites in lumbar CSF: the question of their origin in relation to clinical studies. Brain Res. 1974 Oct 11;79(1):1–8. doi: 10.1016/0006-8993(74)90562-9. [DOI] [PubMed] [Google Scholar]
  19. Giacalone E., Valzelli L. A method for the determination of 5-hydroxyindolyl-3-acetic acid in brain. J Neurochem. 1966 Nov;13(11):1265–1266. doi: 10.1111/j.1471-4159.1966.tb04287.x. [DOI] [PubMed] [Google Scholar]
  20. Gillies J. D., Burke D. J., Lance J. W. Tonic vibration reflex in the cat. J Neurophysiol. 1971 Mar;34(2):252–262. doi: 10.1152/jn.1971.34.2.252. [DOI] [PubMed] [Google Scholar]
  21. Gordon E. K., Oliver J., Black K., Kopin I. J. Simultaneous assay by mass fragmentography of vanillyl mandelic acid, homovanillic acid, and 3-methoxy-4-hydroxy-phenethylene glycol in cerebrospinal fluid and urine. Biochem Med. 1974 Sep;11(1):32–40. doi: 10.1016/0006-2944(74)90092-1. [DOI] [PubMed] [Google Scholar]
  22. Gottfries C. G., Gottfries I., Johansson B., Olsson R., Persson T., Roos B. E., Sjöström R. Acid monoamine metabolites in human cerebrospinal fluid and their relations to age and sex. Neuropharmacology. 1971 Nov;10(6):665–672. doi: 10.1016/0028-3908(71)90081-5. [DOI] [PubMed] [Google Scholar]
  23. Grillner S. The influence of DOPA on the static and the dynamic fusimotor activity to the triceps surae of the spinal cat. Acta Physiol Scand. 1969 Dec;77(4):490–509. doi: 10.1111/j.1748-1716.1969.tb04592.x. [DOI] [PubMed] [Google Scholar]
  24. Hillarp N. A., Fuxe K., Dahlström A. Demonstration and mapping of central neurons containing dopamine, noradrenaline, and 5-hydroxytryptamine and their reactions to psychopharmaca. Pharmacol Rev. 1966 Mar;18(1):727–741. [PubMed] [Google Scholar]
  25. Isaac L. Temperature alteration of monoamine metabolites in cerebrospinal fluid. Nat New Biol. 1973 Jun 27;243(130):269–271. doi: 10.1038/newbio243269a0. [DOI] [PubMed] [Google Scholar]
  26. Johannsson B., Roos B. E. 5-Hydroxyindoleacetic acid and homovanillic acid in cerebrospinal fluid of patients with neurological diseases. Eur Neurol. 1974;11(1):37–45. doi: 10.1159/000114304. [DOI] [PubMed] [Google Scholar]
  27. Johansson B., Roos B. E. Concentrations of monoamine metabolites in human lumbar and cisternal cerebrospinal fluid. Acta Neurol Scand. 1975 Aug;52(2):137–144. doi: 10.1111/j.1600-0404.1975.tb05767.x. [DOI] [PubMed] [Google Scholar]
  28. Lloyd K. G., Farley I. J., Deck J. H., Hornykiewicz O. Serotonin and 5-hydroxyindoleacetic acid in discrete areas of the brainstem of suicide victims and control patients. Adv Biochem Psychopharmacol. 1974;11(0):387–397. [PubMed] [Google Scholar]
  29. MEULEMANS O. Determination of total protein in spinal fluid with sulphosalicylic acid and trichloroacetic acid. Clin Chim Acta. 1960 Sep;5:757–761. doi: 10.1016/0009-8981(60)90020-6. [DOI] [PubMed] [Google Scholar]
  30. Magnusson T. Effect of chronic transection on dopamine, noradrenaline and 5-hydroxytryptamine in the rat spinal cord. Naunyn Schmiedebergs Arch Pharmacol. 1973;278(1):13–22. doi: 10.1007/BF00501859. [DOI] [PubMed] [Google Scholar]
  31. McCOUCH G. P., AUSTIN G. M., LIU C. N., LIU C. Y. Sprouting as a cause of spasticity. J Neurophysiol. 1958 May;21(3):205–216. doi: 10.1152/jn.1958.21.3.205. [DOI] [PubMed] [Google Scholar]
  32. Nobin A., Björklund A. Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand Suppl. 1973;388:1–40. [PubMed] [Google Scholar]
  33. Olson L., Nyström B., Seiger A. Monoamine fluorescence histochemistry of human post mortem brain. Brain Res. 1973 Dec 7;63:231–247. doi: 10.1016/0006-8993(73)90091-7. [DOI] [PubMed] [Google Scholar]
  34. Phillips S. J., Richens A., Shand D. G. Adrenergic control of tendon jerk reflexes in man. Br J Pharmacol. 1973 Mar;47(3):595–605. doi: 10.1111/j.1476-5381.1973.tb08190.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Post R. M., Goodwin F. K., Gordon E., Watkin D. M. Amine metabolites in human cerebrospinal fluid: effects of cord transection and spinal fluid block. Science. 1973 Mar 2;179(4076):897–899. doi: 10.1126/science.179.4076.897. [DOI] [PubMed] [Google Scholar]
  36. Post R. M., Kotin J., Goodwin F. K., Gordon E. K. Psychomotor activity and cerebrospinal fluid amine metabolites in affective illness. Am J Psychiatry. 1973 Jan;130(1):67–72. doi: 10.1176/ajp.130.1.67. [DOI] [PubMed] [Google Scholar]
  37. Siever L., Kraemer H., Sack R., Angwin P., Berger P., Zarcone V., Barchas J., Brodie H. K. Gradients of biogenic amine metabolites in cerebrospinal fluid. Dis Nerv Syst. 1975 Jan;36(1):13–16. [PubMed] [Google Scholar]
  38. Sjöström R., Ekstedt J., Anggård E. Concentration gradients of monoamine metabolites in human cerebrospinal fluid. J Neurol Neurosurg Psychiatry. 1975 Jul;38(7):666–668. doi: 10.1136/jnnp.38.7.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. WEAVER R. A., LANDAU W. M., HIGGINS J. F. FUSIMOTOR FUNCTION. II. EVIDENCE OF FUSIMOTOR DEPRESSION IN HUMAN SPINAL SHOCK. Arch Neurol. 1963 Aug;9:127–132. doi: 10.1001/archneur.1963.00460080037004. [DOI] [PubMed] [Google Scholar]
  40. Watson E., Wilk S. Derivatization and gas chromatographic determination of some biologically important acids in cerebrospinal fluid. Anal Biochem. 1974 Jun;59(2):441–451. doi: 10.1016/0003-2697(74)90297-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES