Abstract
Metabolomics, along with other “omics” approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data.
Keywords: high resolution mass spectrometry, metabolomics, lipidomics, FTMS, FT-ICR-MS, Orbitrap-MS, metabolomics data analysis
1. Introduction
Metabolomics is a global approach aimed at measuring cell metabolomes, which are “context dependent, varying according to the physiology, developmental or pathological state of the cell, tissue, organ or organism” [1]. Metabolomics experiments generally target a large number of chemically diverse small molecular weight compounds including primary metabolites, such as organic acids, amino acids, sugars, sugar alcohols, sugar phosphates, amines, fatty acids, polar lipids, hormones and vitamins, as well as specialized metabolites, like phenolics, flavonoids, monoterpenes, sesquiterpenes, polyketides, alkaloids, and others. Lipidomics aims at measuring a full complement of lipid molecular species in cells, tissues, or organisms [2]. There is an overlap in metabolites usually covered by metabolomics and lipidomics (i.e., many polar lipids, fatty acids, eicosanoids and fat soluble vitamins), and some scientists consider lipids as a subset of metabolome and lipidomics as part of metabolomics. In recent years, metabolomics and lipidomics have become the major analytical approaches in many areas of biology ranging from studying gene functions to systems biology research complementing genomics, transcriptomics and proteomics approaches aimed at understanding global state of the cell.
Mass spectrometry (MS) is often the technique of choice to generate high-throughput metabolomics and lipidomics data due to high sensitivity, relatively short analysis time, wide dynamic range, high reproducibility and, most importantly, its ability to analyze samples with extreme molecular complexity [3,4,5,6]. Over the years, MS has proven itself as powerful technology for the detection and annotation of diverse metabolite classes and has become an important tool for metabolomics analysis in numerous organisms [7]. Therefore, various conventional MS based multiclass analyses are now being replaced by metabolomics approaches that offer excellent combinations of analytical and bioinformatics tools and can provide comprehensive information on a large number of metabolites in any particular system.
Fourier transform mass spectrometers (FTMS) or Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR-MS) are the most advanced mass analyzers in terms of high accuracy and resolving power with sub-parts-per-million mass accuracy [8]. The FT based mass analyzers principally use cyclotron frequency in the fixed magnetic field for the determination of the ions mass to charge ratio (m/z) [9,10] and provide the resolution and mass accuracy that are required to reliably assign molecular formulas to detected ions [11]. The accurate mass measurement by FTMS has been widely demonstrated for the characterization of unknown metabolites by the unambiguous assignment of elemental formulas [3,10,12,13,14,15]. These characteristics of FTMS are ideal for the types of complex mixtures encountered in high throughput metabolomics applications [13].
The disadvantage of FT-ICR-MS instruments is their relatively slow acquisition rates. At a scan rate of 1 Hz with mass resolution of 100,000 at m/z 4000, the number of points over the chromatographic peak, especially if additional MS/MS scans are required, is low when FTMS is combined with modern fast chromatography systems. This limits the application of FT-ICR-MS in liquid chromatography mass spectrometry (LC-MS) and capillary electrophoresis mass spectrometry (CE-MS) based metabolomics. Introduction of the Orbitrap mass analyzer [16] and coupling Orbitrap with liquid [17] and later gas [18,19] chromatography resulted in a growing number of studies employing high resolution mass spectrometry (HRMS) in metabolomics and lipidomics.
Metabolomics [13,20,21] and lipidomics [22] applications of FT-ICR-MS and Orbitrap-MS have been previously reviewed. In this short review, we provide a critical overview of the latest developments in the HRMS based metabolomics approach and its potential for metabolomics, lipidomics and high-density pharmaceutical and environmental analysis. We will mostly focus on applications of FT-ICR-MS and Orbitrap instruments.
2. Advantages of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry (HRMS) for Metabolomics and Lipidomics
High Resolution Mass Spectrometers can routinely achieve mass accuracy below 5 ppm and a mass resolution above 10,000 (which is ratio of measured mass (m) to theoretical mass (Δm) m/Δm, at the full width of the peak at half of its maximum height (FWHM)) (reviewed by [20]). Mass analyzers that can perform HRMS are FT-ICR, Orbitrap and time of flight (TOF) analyzers. TOF based instruments can achieve mass resolution up to 60,000 (at m/z 200), while Orbitrap based instruments can achieve much higher mass resolution—up to 240,000, and over 1,000,000 for FT-ICR (at m/z 400) [20]. HRMS provide several advantages in metabolomics and lipidomics studies, including high resolving power, increased mass accuracy and increased limits of detection [13]. High resolution and mass accuracy also allows for adduct identification with high precision [13]. Application of HRMS based DNA adductomics describing screening of known and unknown adducts of the DNA by using Orbitrap based multiple-stage mass spectrometry (MSn, n = tandem stage) experiments was recently reported [23,24]. Due to these advantages, HRMS techniques are being increasingly used in metabolomics. Below, we summarize major advantages of FT-ICR and Orbitrap based instruments for metabolomics and lipidomics studies by HRMS:
-
(a)
High mass resolution with the ability to achieve measurements with ppm and sub-ppm errors allows a complex metabolic extract to be analyzed with minimal chance of interference from overlap of other species in the mass spectrum [13]. The ability to discriminate metabolites at the 1–3 ppm level not only dramatically improves characterization of complex mixtures but also minimizes ambiguity of molecular formula assignments.
-
(b)
Extremely high mass accuracy and sufficiently high acquisition rates makes FT-ICR and Orbitrap based instruments very popular in direct infusion mass spectrometry (DIMS), especially for metabolic and lipidomics fingerprinting studies. The ability of direct sample infusion would be clearly advantageous over existing time-consuming metabolite analyses or screening methods. With only a few minutes required for data acquisition with very high information content [12], DIMS can decrease the demand for extensive chromatographic separation and dramatically increase sample throughput in large scale screening experiments [12,25,26]. The high-throughput approach permits a sample to be processed within a few minutes and the short analysis time increases inter-sample reproducibility and improves the accuracy of subsequent cluster analysis [27].
-
(c)
Flexibility in choosing the ion source or fragmentation technique. Variety of ion sources, including electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), vacuum or atmospheric, matrix assisted laser desorption ionization (MALDI), desorption ionization (DESI), and direct analysis in real time (DART), are currently available and have been used for metabolomics and lipidomics applications [5,6,13,20,28,29]. Different fragmentation techniques like collision induced dissociation (CID), higher-energy collisional dissociation (HCD), electron induced dissociation (EID), infrared multiphoton dissociation (IRMPD), electron-transfer dissociation (ETD) and electron-transfer and higher-energy collision dissociation (EThcD) are available at any stage of MSn with detection in either the Orbitrap or linear ion trap detector [20].
-
(d)
Ability to perform stepwise fragmentation in multiple stage mass spectrometry (MSn) experiments is useful for more confident metabolite identification or in-depth metabolite characterization of unknown compounds [7].
3. HRMS Applications in Metabolomics and Lipidomics
Numerous studies have been published employing HRMS based techniques in metabolomics [30,31,32,33,34,35,36,37,38,39,40,41], lipidomics [2,22,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67], glycomics [68,69,70], food chemistry [71,72,73], natural products discovery [74,75], environmental [76,77] and pharmaceutical [78,79] studies.
HRMS based metabolomics and lipidomics can be performed either by a shotgun approach based on DIMS where samples are directly infused into a mass spectrometer or using chromatographic or electrophoretic separation prior to MS detection.
3.1. Shotgun Based Approaches
Shotgun approaches based on DIMS are being widely used due to their simplicity, limited sample prep and high throughput. Additionally, the data from direct infusion experiments can be directly used in multivariate statistical analysis without complicated data pre-processing steps. DIMS was successfully applied to metabolomics and lipidomics studies using both FT-ICR and Orbitrap analyzers.
DIMS provides several advantages to large scale metabolomics studies where analysis speed and sample throughout is most important. High mass accuracy and resolution of FT-ICR and Orbitrap instruments can significantly increase the number of molecular species detected in fingerprinting experiments. Even though many metabolites can be observed in DIMS, the majority of the ions remain unidentified. Therefore, this approach is often used in metabolic or lipidomic fingerprinting experiments [80].
Aharoni and co-authors [12] used a direct infusion FTMS approach for high throughput metabolic screening of differentially expressed metabolites in a mutant strawberry population with a relative quantitation and putative identification. Since different isomers sometimes show identical empirical formulas, the data obtained by FTMS experiment was further correlated with data obtained from gene expression studies using DNA microarrays [12]. Authors also suggested the use of preferably similar matrices to avoid any ion suppression and elimination of the adduct formation. In another study, Witting and co-authors [31] used direct-infusion ion-cyclotron-resonance Fourier-transform mass spectrometry (DI-ICR-FT-MS) in non-targeted metabolomics to obtain high-resolution snapshots of the metabolic state of a Caenorhabditis elegans interacting with pathogens. They identified marked decrease in amino-acid metabolism with infection by Pseudomonas aeruginosa and a marked increase in sugar metabolism with infection by Salmonella enterica.
The shotgun approach, in the case of lipidomics, is proven to be an effective method to get quick snapshots of molecular composition of complex lipidomes, and this approach has been demonstrated successfully in combination with HRMS [2,22,42,49,51,58,59,62,81,82,83,84,85,86]. The Orbitrap mass spectrometers are especially useful in shotgun lipidomics because of their rapid acquisition of MS/MS spectra, higher mass resolution and optional MSn fragmentation [2,42,44], and, most importantly, the rapid polarity switching with sub-ppm mass accuracy, which ultimately simplifies and accelerates the shotgun lipidomics analysis and improves lipidome coverage [42].
Matrix assisted laser desorption ionization (MALDI) coupled to FTMS is another approach that can be used for shotgun analysis. This technique, for example, was used by Wang and co-authors to study urinary metabolites, mainly focused on prediction of acute cellular renal allograft rejection [87] and acute tubular injury [88] through urinary metabolomics. Both studies suggest that the use of MALDI resulted in production of singly charged species and higher sensitivity and specificity [87,88].
Despite many advantages, DIMS and other shotgun approaches suffer significant drawbacks mostly related to their limited ability to resolve isobaric species or co-suppression effect where useful signals from many metabolites are lost at the mass spectrometer interface. To minimize co-suppression effect, two-step fingerprinting/validating strategy [89] or fractionated fingerprinting approach [90,91] can be used for metabolic fingerprinting.
3.2. Hyphenated Techniques
To overcome issues related to sample complexity, co-suppression, and improve resolution of isobaric species, FTMS is often used in combination with front-end chromatography or electrophoresis separation techniques like gas chromatography (GC), liquid chromatography (LC), ion chromatography (IC) or capillary electrophoresis (CE) (reviewed by [21,92]).
LC-MS analysis has been extensively used in metabolomics and lipidomics studies over the last decade [93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118]. It offers high sensitivity, high resolution and covers wide polarity and molecular weight range of analytes. Over the years, a large number of LC-MS based techniques have been developed to study many metabolite classes.
Recent advances in LC separation methodology, including development of ultra-performance liquid chromatography (UPLC), using capillary monolithic columns, and application of fused core particles, significantly improved chromatographic resolution and resulted in increased analysis speed and metabolite coverage, which is critical in large scale metabolomics experiments.
Application of solid or fused-core particles can provide faster chromatographic separation and increased sample throughput. Hu and co-authors [93] demonstrated the development and validation of the LC-FT-ICR-MS method for profiling of lipids in human and mouse plasma using a fused-core column. They used a C8 column with 2.7 µm fused-core silica particles and a 0.5 µm thick porous shell, which allows higher flow rates and faster separations that are subsequently detected by FTMS [93]. In a recent study, Granafei and co-authors [119] demonstrated the use of fused-core ultrapure silica particles (2.7 µm) narrow bore column in combination with LC-ESI-FTMS for the identification of isobaric lyso-phosphatidylcholines (LPC) in lipid extract of gilthead sea bream, which led to significant improvement in chromatographic resolution of phospholipids and, in combination with Orbitrap MS, it was useful to resolve the remarkable complexity of LPC [119]. Solid or fused core particles are now available in many different phases and particle sizes (from 1.6 to 5 µm) and are provided by multiple commercial vendors. Damen and co-authors described a novel approach for the separation of different lipid molecular species and lipid isomers in human plasma using a stationary phase incorporating charged surface hybrid (CSH) technology using reversed-phase UPLC combined with ion-mobility and HRMS [120].
To increase metabolite coverage, it is plausible to use multiple chromatographic separations utilizing different column chemistry and combine data from these separations. Soltow and co-authors, for example, used a dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) approach to increase the number of detected metabolites in their study of the exposome [26]. Authors performed sequential LC-FTMS analyses using reverse phase (C18) chromatography and anion exchange (AE) chromatography. This approach increased m/z feature detection by 23%–36%, yielding a total number of features up to 7000 for individual samples when compared to analysis with the AE column alone. From all detected features, approximately 50% of the m/z was matched to known chemicals in metabolomic databases, and 23% of the m/z were common to analyses on both columns.
Significant technical advances for the HRMS-based metabolomics in the past few years was the introduction of the GC-enabled quadrupole linear ion trap (QLT)-Orbitrap hybrid mass spectrometer capable of high resolution (up to 100,000 at m/z 400) and sub-parts-per-million mass accuracy GC-MS [121]. The performance of the new instrument was demonstrated by its application to the determination of polychlorinated dibenzo-p-dioxins and dibenzofurans in the environmental samples and profiling of primary metabolites in Arabidopsis thaliana extracts [121]. Later, Peterson and co-authors [18,19] reported the development of GC/Quadrupole Orbitrap mass spectrometer which combines high mass accuracy, high resolution, and high sensitivity analyte detection that makes it a promising instrument for both untargeted and targeted metabolomics studies. The authors also developed an “intelligent” data-dependent algorithm, termed molecular ion directed acquisition (MIDA). This algorithm maximizes the information content generated from unsupervised tandem MS and selected ion monitoring (SIM) by directing the MS to target the ions of greatest information content [18]. New instruments and software were successfully used for non-targeted metabolomics. Combination of 13C- and 15N-metabolic labeling, multiple derivatization and ionization types, and heuristic filtering of candidate elemental compositions allowed to achieve MS/MS spectra of nearly all intact ion species for structural elucidation, knowledge of carbon and nitrogen atom content for every ion in MS and MS/MS spectra, relative quantification between alternatively labeled samples, and unambiguous annotation of elemental composition [18,19]. This proved it to be a very promising technology in discovery metabolomics to study volatile compounds or compounds that can be volatilized by chemical derivatization.
3.3. Mass Spectrometry Imaging
One of the drawbacks of the DIMS and most hyphenated techniques is their inability to provide spatial information on localization of various metabolites and lipids in organs and tissues. The mass spectrometry imaging (MSI) approach can provide this spatial information. Multiple MSI approaches based on different ionization techniques have been developed and are currently being widely used. Among them, MALDI combined with HRMS is the most often used in imaging applications. It has been successfully used for imaging a variety of human [122,123,124,125,126], animal [127,128,129,130,131] and plant [132,133] tissues. For example, spatial mapping of lipids at cellular resolution in cotton embryos using MALDI Hybrid Ion Trap-Orbitrap (MALDI LTQ Orbitrap XL) mass spectrometer showed differential distribution of lipid species such as triglycerols and phosphatidylcholines [133,134]. Many other lipidomics applications of MALDI imaging were subsequently reviewed by [133,134,135]. Most MSI applications are currently focused on imaging lipids [136,137,138,139,140,141,142,143], although imaging of primary and specialized metabolites and xenobiotics has been reported [122,128,132,144,145,146].
Ambient ionization methods, such as atmospheric pressure MALDI (AP-MALDI) [147,148,149,150,151], desorption electrospray ionization (DESI) [152,153] and matrix-assisted laser desorption electrospray ionization (MALDESI) [146,154,155,156], have also been employed for MSI. Ambient ionization approaches can provide certain advantages over the vacuum MALDI source for MSI. For example, AP-MALDI can provide high spatial resolution (below 10 µm) with high mass resolution and high mass accuracy obtained with Orbitrap-based instrumentation [147,148,149,150,151].
3.4. Other Applications of HRMS
Analytical advantages of HRMS make it broadly applicable to other fields beyond metabolomics and lipidomics. Numerous studies have been published employing HRMS based techniques in many research areas, such as glycomics [68,69,70], food science [71,72,73], forensics [157], toxicology [157,158], natural products discovery [74,75], agriculture [37,96,159,160,161,162,163,164,165,166,167], environmental [76,77] and pharmaceutical [78,79] studies. In recent years, food authenticity and safety have become a global concern prompting the development of novel analytical techniques to address food safety issues. The role of HRMS in many studies has proven it to be crucial for understanding process contamination, food adulteration and food contaminants, such as pesticides and mycotoxins [71,72,159,160,161,162]. In a case study of doping control, Kiss and colleagues used ultra HRMS based non-targeted metabolomics to study salbutamol and budesonide abuse through analysis of human urinary metabolites [168]. In another doping control study, markers of testosterone misuse were analyzed by untargeted metabolomics approach and HRMS [79]. Applications of HRMS in agriculture range from determining mycotoxins in agricultural products [163,164,165] and profiling human health related metabolites in crop plants [169,170,171] to studying the effect of different diets on animal metabolism [37]. In recent study, Sun and co-authors studied the effect of high fat, high cholesterol diet on changes in metabolite patterns in pigs [37]. They analyzed plasma, fecal and urine samples from pigs fed high fat or basal regular diets using Ultra High Performance Liquid Chromatography (UHPLC)-HRMS and chemometric analysis and found a set of metabolites most affected by the diet [37,172]. Although the application of metabolomics in environmental studies for the analysis of environmental pollutants has been reported [164,167,173,174,175,176,177,178,179], the use of HRMS based MS techniques for environmental research is still limited [76,77]. Applications of mass spectrometry in the pharmaceutical metabolomics can be further expanded by using HRMS (reviewed by Drexler and colleagues [78]).
4. Data Analysis and Databases
Metabolomics experiments based on non-targeted HRMS analysis generate large amounts of data and require extensive raw data pre-processing and application of specialized mathematical, statistical and bioinformatics tools [92,180,181,182,183]. Pre-processing can be done by using in-house or specialized tools [184,185]. Multivariate statistics tools commonly used to analyze metabolomics data include pattern recognition, identification of outliers, reduction of data dimensionality, and compression of large datasets [92,182,186].
As FTMS provides the resolution and mass accuracy that are required to reliably assign molecular formulas to detected ions, it is imperative to use this information to metabolite identifications. It is generally accepted that accurate mass alone is not sufficient to positively identify an unknown structure, and the chemical structure database returns multiple hits (sometime several hundred or more) at a defined mass tolerance window. Even at the highest mass resolution, FTMS cannot provide exact identification because many isobaric species and structural isomers have identical empirical formulas. In such cases, additional information, including chromatographic retention time, isotope pattern matching, collisional cross section (CCS), and use of multiple stage mass spectrometry (MSn) is needed for correct compound annotation [187,188,189]. MS data can also be correlated with nuclear magnetic resonance (NMR) data.
Numerous chemical reference databases and mass spectral libraries are currently publicly available. There is also a significant increase in accurate mass enabled mass spectral databases in recent years.
Reference chemical and biochemical databases are either focused on collecting reference information on chemical compounds independently of their sources or provide information on endogenous and exogenous metabolites linked to a particular biological system or matrix. Some databases are limited to a particular metabolite classes. Among the largest chemical databases are PubChem [190,191,192] and ChemSpider [193,194,195]. Mass spectral libraries and databases containing fragmentation data are invaluable resources for compound identification. Until recently, many MS/MS databases contained only nominal mass spectral data. The increased application of HRMS in metabolomics leads to the development of accurate mass enabled spectral search programs and databases that contain information on accurate mass of just the precursor or both the precursor and fragment ions. The popular NIST (National Institute of Standards and Technology) MS Search program version 2.0 released in 2011 (Standard Reference Data, NIST, Gaithersburg, MD, USA) allows for exact mass search of parent and fragment ion. Many open-access spectral databases also contain accurate mass information and high resolution mass spectra. For example, the Scripps Center for Metabolomics released the online database called METLIN [196] which is a repository of metabolite information and tandem mass spectrometry data designed to facilitate metabolite identification in metabolomics [33,197,198,199]. The database provides comprehensive MS/MS metabolite data and each metabolite is linked to outside resources like Kyoto Encyclopedia of Genes and Genomes (KEGG) for further reference. The webserver MassTRIX [200,201,202] provides assignment of the bulk chemical formulae considering biological and genomic context of the samples. The mass difference network based approach for formula calculation [203] or on data combination from lower resolution LC-MS with FT-ICR-MS [204] can also be used.
Other metabolomics databases used in many metabolomics studies include KEGG [205,206], Madison Metabolomics Consortium Database (MMCD) [207], Human Metabolome Database and drug bank [208,209], and LIPID Metabolites and Pathway Strategy (LIPIDMAPS) [210,211]. Tools for putative metabolite identification using multiple online databases, e.g., MetaboSearch, can simplify concurrent searches of multiple metabolite databases [212].
Specialized algorithms for profiling individual metabolite classes have also been developed [213,214]. For example, the program “LipidSearch” developed by Taguchi and co-authors [213], utilizes specific detection approach by neutral loss survey-dependent MS3, for the identification of molecular species of phosphatidylcholine, sphingomyelin and phosphatidylserine. LipidSearch program combined with HRMS was successfully used for lipid annotation in multiple studies [213,215,216,217,218,219]. Several other programs such as LipidQA [220], LIMSA [221], FAATc [222], lipID [223], LipidView [50], LipidInspector [46] (Herzog et al.) are specialized in identification of lipids from the shotgun experiments. Extensive review of bioinformatics tools and software can be found in the literature [44,224]. A novel approach to represent and calculate the similarity between high-resolution mass spectral trees (Figure 1) has been proposed for the construction of the MSn libraries for the annotation and structural elucidation of the unknown metabolites. Structures of the unknown metabolites can be predicted in a high throughput approach utilizing fragmentation trees and precursor ion fingerprinting (PIF) technique [7,225,226]. This approach utilizes structural information from high resolution fragmentation spectra and predicts the identity of the unknown metabolite by determining its possible substructures (Figure 1). High resolution MSn spectra of unknown metabolites are first collected using the spectral ion tree approach. The product ion MSn spectra of various precursor ions are then searched against the MSn spectral library. Although the unknown metabolite is not present in the spectral library, the spectra of molecules that contain similar substructures will provide unambiguous substructure identifications. Identified substructures/fragments are used to generate a structural proposal for unknown metabolite (Figure 2).
Until recently, wider use of this approach was limited by the lack of publically available curated spectral tree databases. The newly developed mzCloud library [227] provides a significant step forward in this direction. mzCloud is a novel type of mass spectral database that can help to predict structures of unknown metabolites and identify compounds even when they are not present in the mass spectral library using PIF technique [226]. This is of immense value when traditional library search yields no results. PIF relies on well defined and chemically plausible structures of fragment ions, which are either used to reassemble the parent compound or, at the very least, point towards its structural characteristics. The library contains substructurally characterized precursor ions of MSn spectra calculated using heuristic and quantum chemical methods. The quantum chemical annotation pipeline for precursor ion prediction contains over 500,000 unique 3D structures with calculated thermochemical properties in semi-empirical and Discrete Fourier Transform (DFT) levels of theory. Each spectral peak present in the library is annotated by one or more alternative molecular formulas that can be displayed in the spectra. mzCloud employs a freely searchable collection of manually curated, high resolution/accurate mass spectra based on the cloud technology. mzCloud library has an advanced database viewer which displays: spectral trees, MSn spectra, structures, fragments, fragmentation patterns, collision energies, resolution, accuracy, isolation width, names, break-down curves and other relevant information. To date, the mzCloud database features over 1,00,000 processed spectral records covering a wide range of collision energies up to MS8 in 4300 endogenous metabolites, plant secondary metabolites, food additives, pharmaceuticals, environmental contaminants and other compounds relevant for metabolomics.
5. Conclusions: Technological Developments and Future Perspectives
FTMS and Orbitrap based MS technology have proven to be useful for untargeted or targeted screening and a broad range of qualitative and quantitative applications in diverse fields like metabolomics, lipidomics, drug discovery, proteomics, environmental and food safety, clinical research, forensic toxicology and agricultural science. Today, we have some of the best and highly advanced FTMS and Orbitrap systems available on the market. Modern FTMS systems offer ultra-high mass resolution of 10,000,000, while current Orbitrap systems offer less than 1 ppm mass accuracy, up to 450,000 FWHM, more than four orders of magnitude intrascan dynamic range, along with femtogram-level sensitivity, a fast scanning rate at 15 Hz and spectral multiplexing suited to UHPLC applications and mass range to 6000 Da. Improvement in instrumentation was accompanied by development of new data processing algorithms, software and databases, many of which are available in the public domain.
In the near future, we should see more improvements in instrumentation and processing software, specifically in increasing data acquisition rate, improving isotope ratio accuracy, exploring more hyphenated techniques and multi-dimensional chromatography, and creating integrated and flexible data processing solutions from raw data to biological interpretation. It is also necessary to increase community efforts in standardizing metabolomics and lipidomics data and metadata standards, and expanding bioinformatics tools and metabolomics data repositories available to the community.
Acknowledgments
The research in the author’s lab is financially supported by a grant from Cotton Incorporated and National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID) grant 5R01AI111962-02.
Abbreviations
The following abbreviations are used in this manuscript:
AE | Anion exchange |
APCI | Atmospheric pressure chemical ionization |
AP-MALDI | Atmospheric pressure matrix-assisted laser desorption ionization |
ATI | Acute tubular injury |
CCS | Collisional cross section |
CE-MS | Capillary electrophoresis mass spectrometry |
CID | Collision induced dissociation |
CSH | Charged surface hybrid |
DART | Direct analysis in real time |
DC-FTMS | Dual chromatography-Fourier transform mass spectrometry |
DESI | Desorption electrospray ionization |
DFT | Discrete Fourier transform |
DIMS | Direct infusion mass spectrometry |
DNA | Deoxyribonucleic acid |
EID | Electron induced dissociation |
ESI | Electro spray ionization |
ETD | Electron-transfer dissociation |
EThcD | Electron-transfer and higher-energy collision dissociation |
FT-ICR-MS | Fourier transform ion cyclotron resonance mass spectrometry |
FTMS | Fourier transform mass spectrometry |
FWHM | Full width at half maximum |
GC-MS | Gas chromatography coupled to mass spectrometry |
HCD | Higher-energy collisional dissociation |
HRMS | High resolution mass spectrometry |
IC | Ion chromatography |
IRMPD | Infrared multiphoton dissociation |
KEGG | Kyoto encyclopedia of genes and genomes |
LC-FT-ICR-MS | Liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry |
LC-FTMS | Liquid chromatography-Fourier transform mass spectrometry |
LC-MS | Liquid chromatography coupled to mass spectrometry |
LPC | Lyso-phosphatidylcholines |
m/z | Mass to charge ratio |
MALDESI | Matrix-assisted laser desorption electrospray ionization |
MALDI | Matrix assisted laser desorption ionization |
MIDA | Molecular ion directed acquisition |
MMCD | Madison metabolomics consortium database |
MS/MS | Tandem mass spectrometry |
MS | Mass spectrometry |
MSI | Mass spectrometry imaging |
MSn | Multiple-stage mass spectrometry |
NMR | Nuclear magnetic resonance |
PCDD | Polychlorinated dibenzo-p-dioxins |
PCDF | Polychlorinated dibenzofurans |
PIF | Precursor ion fingerprinting |
SIM | Selected ion monitoring |
UHPLC | Ultra high performance liquid chromatography |
UPLC | Ultra performance liquid chromatography |
Conflicts of Interest
The authors declare no conflict of interest. Robert Mistrik derives income from mzCloud and precursor ion fingerprinting (PIF) licensing.
References
- 1.Oliver S.G., Winson M.K., Kell D.B., Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998;16:373–378. doi: 10.1016/S0167-7799(98)01214-1. [DOI] [PubMed] [Google Scholar]
- 2.Schuhmann K., Herzog R., Schwudke D., Metelmann-Strupat W., Bornstein S.R., Shevchenko A. Bottom-up shotgun lipidomics by higher energy collisional dissociation on LTQ Orbitrap mass spectrometers. Anal. Chem. 2011;83:5480–5487. doi: 10.1021/ac102505f. [DOI] [PubMed] [Google Scholar]
- 3.Soltow Q.A., Jones D.P., Promislow D.E. A network perspective on metabolism and aging. Integr. Comp. Biol. 2010;50:844–854. doi: 10.1093/icb/icq094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Want E.J., Nordstrom A., Morita H., Siuzdak G. From exogenous to endogenous: The inevitable imprint of mass spectrometry in metabolomics. J. Proteome Res. 2007;6:459–468. doi: 10.1021/pr060505+. [DOI] [PubMed] [Google Scholar]
- 5.Kuehnbaum N.L., Britz-McKibbin P. New advances in separation science for metabolomics: Resolving chemical diversity in a post-genomic era. Chem. Rev. 2013;113:2437–2468. doi: 10.1021/cr300484s. [DOI] [PubMed] [Google Scholar]
- 6.Nagornov K.O., Gorshkov M.V., Kozhinov A.N., Tsybin Y.O. High-resolution Fourier transform ion cyclotron resonance mass spectrometry with increased throughput for biomolecular analysis. Anal. Chem. 2014;86:9020–9028. doi: 10.1021/ac501579h. [DOI] [PubMed] [Google Scholar]
- 7.Rojas-Cherto M., Peironcely J.E., Kasper P.T., van der Hooft J.J., de Vos R.C., Vreeken R., Hankemeier T., Reijmers T. Metabolite identification using automated comparison of high-resolution multistage mass spectral trees. Anal. Chem. 2012;84:5524–5534. doi: 10.1021/ac2034216. [DOI] [PubMed] [Google Scholar]
- 8.Erve J.C., Demaio W., Talaat R.E. Rapid metabolite identification with sub parts-per-million mass accuracy from biological matrices by direct infusion nanoelectrospray ionization after clean-up on a ZipTip and LTQ/Orbitrap mass spectrometry. Rapid Commun. Mass Spectrom. 2008;22:3015–3026. doi: 10.1002/rcm.3702. [DOI] [PubMed] [Google Scholar]
- 9.Comisarow M.B., Marshall A.G. The early development of Fourier transform ion cyclotron resonance (FT-ICR) spectroscopy. J. Mass Spectrom. 1996;31:581–585. doi: 10.1002/(SICI)1096-9888(199606)31:6<581::AID-JMS369>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
- 10.Marshall A.G., Hendrickson C.L., Jackson G.S. Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass Spectrom. Rev. 1998;17:1–35. doi: 10.1002/(SICI)1098-2787(1998)17:1<1::AID-MAS1>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
- 11.Villas-Boas S.G., Mas S., Akesson M., Smedsgaard J., Nielsen J. Mass spectrometry in metabolome analysis. Mass Spectrom. Rev. 2005;24:613–646. doi: 10.1002/mas.20032. [DOI] [PubMed] [Google Scholar]
- 12.Aharoni A., Ric de Vos C.H., Verhoeven H.A., Maliepaard C.A., Kruppa G., Bino R., Goodenowe D.B. Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics J. Integr. Biol. 2002;6:217–234. doi: 10.1089/15362310260256882. [DOI] [PubMed] [Google Scholar]
- 13.Brown S.C., Kruppa G., Dasseux J.L. Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom. Rev. 2005;24:223–231. doi: 10.1002/mas.20011. [DOI] [PubMed] [Google Scholar]
- 14.Jeandet P., Heinzmann S.S., Roullier-Gall C., Cilindre C., Aron A., Deville M.A., Moritz F., Karbowiak T., Demarville D., Brun C., et al. Chemical messages in 170-year-old champagne bottles from the Baltic Sea: Revealing tastes from the past. Proc. Natl. Acad. Sci. USA. 2015;112:5893–5898. doi: 10.1073/pnas.1500783112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Comisarow M.B., Marshall A.G. Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 1974;25:282–283. doi: 10.1016/0009-2614(74)89137-2. [DOI] [Google Scholar]
- 16.Hu Q., Noll R.J., Li H., Makarov A., Hardman M., Graham Cooks R. The Orbitrap: A new mass spectrometer. J. Mass Spectrom. 2005;40:430–443. doi: 10.1002/jms.856. [DOI] [PubMed] [Google Scholar]
- 17.Makarov A., Scigelova M. Coupling liquid chromatography to Orbitrap mass spectrometry. J. Chromatogr. A. 2010;1217:3938–3945. doi: 10.1016/j.chroma.2010.02.022. [DOI] [PubMed] [Google Scholar]
- 18.Peterson A.C., Balloon A.J., Westphall M.S., Coon J.J. Development of a GC/Quadrupole-Orbitrap mass spectrometer, part II: New approaches for discovery metabolomics. Anal. Chem. 2014;86:10044–10051. doi: 10.1021/ac5014755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Peterson A.C., Hauschild J.P., Quarmby S.T., Krumwiede D., Lange O., Lemke R.A., Grosse-Coosmann F., Horning S., Donohue T.J., Westphall M.S., et al. Development of a GC/Quadrupole-Orbitrap mass spectrometer, part I: Design and characterization. Anal. Chem. 2014;86:10036–10043. doi: 10.1021/ac5014767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Junot C., Fenaille F., Colsch B., Becher F. High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrom. Rev. 2014;33:471–500. doi: 10.1002/mas.21401. [DOI] [PubMed] [Google Scholar]
- 21.Junot C., Madalinski G., Tabet J.C., Ezan E. Fourier transform mass spectrometry for metabolome analysis. Analyst. 2010;135:2203–2219. doi: 10.1039/c0an00021c. [DOI] [PubMed] [Google Scholar]
- 22.Schwudke D., Schuhmann K., Herzog R., Bornstein S.R., Shevchenko A. Shotgun lipidomics on high resolution mass spectrometers. Cold Spring Harbor Perspect. Biol. 2011;3:a004614. doi: 10.1101/cshperspect.a004614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Balbo S., Turesky R.J., Villalta P.W. DNA adductomics. Chem. Res. Toxicol. 2014;27:356–366. doi: 10.1021/tx4004352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Balbo S., Hecht S.S., Upadhyaya P., Villalta P.W. Application of a high-resolution mass-spectrometry-based DNA adductomics approach for identification of DNA adducts in complex mixtures. Anal. Chem. 2014;86:1744–1752. doi: 10.1021/ac403565m. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Raterink R.-J., Kloet F.M., Li J., Wattel N.A., Schaaf M.J.M., Spaink H.P., Berger R., Vreeken R.J., Hankemeier T. Rapid metabolic screening of early zebrafish embryogenesis based on direct infusion-nanoESI-FTMS. Metabolomics. 2013;9:864–873. doi: 10.1007/s11306-012-0493-6. [DOI] [Google Scholar]
- 26.Soltow Q.A., Strobel F.H., Mansfield K.G., Wachtman L., Park Y., Jones D.P. High-performance metabolic profiling with dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) for study of the exposome. Metabolomics. 2013;9:S132–S143. doi: 10.1007/s11306-011-0332-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Dettmer K., Aronov P.A., Hammock B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007;26:51–78. doi: 10.1002/mas.20108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Lei Z., Huhman D.V., Sumner L.W. Mass spectrometry strategies in metabolomics. J. Biol. Chem. 2011;286:25435–25442. doi: 10.1074/jbc.R111.238691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Moco S., Capanoglu E., Tikunov Y., Bino R.J., Boyacioglu D., Hall R.D., Vervoort J., de Vos R.C. Tissue specialization at the metabolite level is perceived during the development of tomato fruit. J. Exp. Bot. 2007;58:4131–4146. doi: 10.1093/jxb/erm271. [DOI] [PubMed] [Google Scholar]
- 30.Wishart D.S., Lewis M.J., Morrissey J.A., Flegel M.D., Jeroncic K., Xiong Y., Cheng D., Eisner R., Gautam B., Tzur D., et al. The human cerebrospinal fluid metabolome. J. Chromatogr. B. 2008;871:164–173. doi: 10.1016/j.jchromb.2008.05.001. [DOI] [PubMed] [Google Scholar]
- 31.Witting M., Lucio M., Tziotis D., Wagele B., Suhre K., Voulhoux R., Garvis S., Schmitt-Kopplin P. DI-ICR-FT-MS-based high-throughput deep metabotyping: A case study of the Caenorhabditis elegans-Pseudomonas aeruginosa infection model. Anal. Bioanal. Chem. 2015;407:1059–1073. doi: 10.1007/s00216-014-8331-5. [DOI] [PubMed] [Google Scholar]
- 32.Zhou J., Weber R.J., Allwood J.W., Mistrik R., Zhu Z., Ji Z., Chen S., Dunn W.B., He S., Viant M.R. HAMMER: Automated operation of mass frontier to construct in silico mass spectral fragmentation libraries. Bioinformatics. 2014;30:581–583. doi: 10.1093/bioinformatics/btt711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Zhu Z.J., Schultz A.W., Wang J., Johnson C.H., Yannone S.M., Patti G.J., Siuzdak G. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat. Protoc. 2013;8:451–460. doi: 10.1038/nprot.2013.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Meijon M., Feito I., Oravec M., Delatorre C., Weckwerth W., Majada J., Valledor L. Exploring natural variation of Pinus pinaster Aiton using metabolomics: Is it possible to identify the region of origin of a pine from its metabolites? Mol. Ecol. 2016;25:959–976. doi: 10.1111/mec.13525. [DOI] [PubMed] [Google Scholar]
- 35.Diaz R., Gallart-Ayala H., Sancho J.V., Nunez O., Zamora T., Martins C.P., Hernandez F., Hernandez-Cassou S., Saurina J., Checa A. Told through the wine: A liquid chromatography-mass spectrometry interplatform comparison reveals the influence of the global approach on the final annotated metabolites in non-targeted metabolomics. J. Chromatogr. A. 2016;1433:90–97. doi: 10.1016/j.chroma.2016.01.010. [DOI] [PubMed] [Google Scholar]
- 36.Thevenot E.A., Roux A., Xu Y., Ezan E., Junot C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res. 2015;14:3322–3335. doi: 10.1021/acs.jproteome.5b00354. [DOI] [PubMed] [Google Scholar]
- 37.Sun J., Monagas M., Jang S., Molokin A., Harnly J.M., Urban J.F., Jr., Solano-Aguilar G., Chen P. A high fat, high cholesterol diet leads to changes in metabolite patterns in pigs—A metabolomic study. Food Chem. 2015;173:171–178. doi: 10.1016/j.foodchem.2014.09.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Sun J., Kou L., Geng P., Huang H., Yang T., Luo Y., Chen P. Metabolomic assessment reveals an elevated level of glucosinolate content in CaCl2 treated broccoli microgreens. J. Agric. Food Chem. 2015;63:1863–1868. doi: 10.1021/jf504710r. [DOI] [PubMed] [Google Scholar]
- 39.Shen C., Sun Z., Chen D., Su X., Jiang J., Li G., Lin B., Yan J. Developing urinary metabolomic signatures as early bladder cancer diagnostic markers. Omics J. Integr. Biol. 2015;19:1–11. doi: 10.1089/omi.2014.0116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Scalabrin E., Radaelli M., Rizzato G., Bogani P., Buiatti M., Gambaro A., Capodaglio G. Metabolomic analysis of wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses: Unraveling metabolic responses. Anal. Bioanal. Chem. 2015;407:6357–6368. doi: 10.1007/s00216-015-8770-7. [DOI] [PubMed] [Google Scholar]
- 41.Nicolardi S., Bogdanov B., Deelder A.M., Palmblad M., van der Burgt Y.E. Developments in FTICR-MS and its potential for body fluid signatures. Int. J. Mol. Sci. 2015;16:27133–27144. doi: 10.3390/ijms161126012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Schuhmann K., Almeida R., Baumert M., Herzog R., Bornstein S.R., Shevchenko A. Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes. J. Mass Spectrom. 2012;47:96–104. doi: 10.1002/jms.2031. [DOI] [PubMed] [Google Scholar]
- 43.Koulman A., Woffendin G., Narayana V.K., Welchman H., Crone C., Volmer D.A. High-resolution extracted ion chromatography, a new tool for metabolomics and lipidomics using a second-generation orbitrap mass spectrometer. Rapid Commun. Mass Spectrom. 2009;23:1411–1418. doi: 10.1002/rcm.4015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Herzog R., Schwudke D., Schuhmann K., Sampaio J.L., Bornstein S.R., Schroeder M., Shevchenko A. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol. 2011;12:R8. doi: 10.1186/gb-2011-12-1-r8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Graessler J., Schwudke D., Schwarz P.E., Herzog R., Shevchenko A., Bornstein S.R. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS ONE. 2009;4:816. doi: 10.1371/journal.pone.0006261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Schwudke D., Liebisch G., Herzog R., Schmitz G., Shevchenko A. Shotgun lipidomics by tandem mass spectrometry under data-dependent acquisition control. Methods Enzymol. 2007;433:175–191. doi: 10.1016/S0076-6879(07)33010-3. [DOI] [PubMed] [Google Scholar]
- 47.Shevchenko A., Simons K. Lipidomics: Coming to grips with lipid diversity. Nat. Rev. Mol. Cell Biol. 2010;11:593–598. doi: 10.1038/nrm2934. [DOI] [PubMed] [Google Scholar]
- 48.Matyash V., Liebisch G., Kurzchalia T.V., Shevchenko A., Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008;49:1137–1146. doi: 10.1194/jlr.D700041-JLR200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Almeida R., Pauling J.K., Sokol E., Hannibal-Bach H.K., Ejsing C.S. Comprehensive lipidome analysis by shotgun lipidomics on a hybrid quadrupole-orbitrap-linear ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 2015;26:133–148. doi: 10.1007/s13361-014-1013-x. [DOI] [PubMed] [Google Scholar]
- 50.Ejsing C.S., Duchoslav E., Sampaio J., Simons K., Bonner R., Thiele C., Ekroos K., Shevchenko A. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal. Chem. 2006;78:6202–6214. doi: 10.1021/ac060545x. [DOI] [PubMed] [Google Scholar]
- 51.Tarasov K., Stefanko A., Casanovas A., Surma M.A., Berzina Z., Hannibal-Bach H.K., Ekroos K., Ejsing C.S. High-content screening of yeast mutant libraries by shotgun lipidomics. Mol. Biosyst. 2014;10:1364–1376. doi: 10.1039/C3MB70599D. [DOI] [PubMed] [Google Scholar]
- 52.Almeida R., Berzina Z., Arnspang E.C., Baumgart J., Vogt J., Nitsch R., Ejsing C.S. Quantitative spatial analysis of the mouse brain lipidome by pressurized liquid extraction surface analysis. Anal. Chem. 2015;87:1749–1756. doi: 10.1021/ac503627z. [DOI] [PubMed] [Google Scholar]
- 53.Casanovas A., Hannibal-Bach H.K., Jensen O.N., Ejsing C.S. Shotgun lipidomic analysis of chemically sulfated sterols compromises analytical sensitivity: Recommendation for large-scale global lipidome analysis. Eur. J. Lipid Sci. Technol. 2014;116:1618–1620. doi: 10.1002/ejlt.201400451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Hansen M.L., Clausen A., Ejsing C.S., Risbo J. Modulation of the Lactobacillus acidophilus La-5 lipidome by different growth conditions. Microbiology. 2015;161:1990–1998. doi: 10.1099/mic.0.000145. [DOI] [PubMed] [Google Scholar]
- 55.Jensen S.M., Brandl M., Treusch A.H., Ejsing C.S. Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics. J. Mass Spectrom. 2015;50:476–487. doi: 10.1002/jms.3553. [DOI] [PubMed] [Google Scholar]
- 56.Jensen S.M., Neesgaard V.L., Skjoldbjerg S.L., Brandl M., Ejsing C.S., Treusch A.H. The effects of temperature and growth phase on the lipidomes of Sulfolobus islandicus and Sulfolobus tokodaii. Life. 2015;5:1539–1566. doi: 10.3390/life5031539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Sokol E., Ulven T., Faergeman N.J., Ejsing C.S. Comprehensive and quantitative profiling of lipid species in human milk, cow milk and a phospholipid-enriched milk formula by GC and MS/MS. Eur. J. Lipid Sci. Technol. 2015;117:751–759. doi: 10.1002/ejlt.201400575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Wang M., Wang C., Han R.H., Han X. Novel advances in shotgun lipidomics for biology and medicine. Prog. Lipid Res. 2016;61:83–108. doi: 10.1016/j.plipres.2015.12.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Wang M., Han X. Advanced shotgun lipidomics for characterization of altered lipid patterns in neurodegenerative diseases and brain injury. Methods Mol. Biol. 2016;1303:405–422. doi: 10.1007/978-1-4939-2627-5_24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Hu S., Wang J., Ji E.H., Christison T., Lopez L., Huang Y. Targeted metabolomic analysis of head and neck cancer cells using high performance ion chromatography coupled with a Q Exactive HF mass spectrometer. Anal. Chem. 2015;87:6371–6379. doi: 10.1021/acs.analchem.5b01350. [DOI] [PubMed] [Google Scholar]
- 61.Bird S.S., Stavrovskaya I.G., Gathungu R.M., Tousi F., Kristal B.S. Qualitative characterization of the rat liver mitochondrial lipidome using all ion fragmentation on an Exactive benchtop Orbitrap MS. Methods Mol. Biol. 2015;1264:441–452. doi: 10.1007/978-1-4939-2257-4_36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Wang M., Huang Y., Han X. Accurate mass searching of individual lipid species candidates from high-resolution mass spectra for shotgun lipidomics. Rapid Commun. Mass Spectrom. 2014;28:2201–2210. doi: 10.1002/rcm.7015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Zhang R., Watson D.G., Wang L., Westrop G.D., Coombs G.H., Zhang T. Evaluation of mobile phase characteristics on three zwitterionic columns in hydrophilic interaction liquid chromatography mode for liquid chromatography-high resolution mass spectrometry based untargeted metabolite profiling of Leishmania parasites. J. Chromatogr. A. 2014;1362:168–179. doi: 10.1016/j.chroma.2014.08.039. [DOI] [PubMed] [Google Scholar]
- 64.Wang M., Han X. Multidimensional mass spectrometry-based shotgun lipidomics. Methods Mol. Biol. 2014;1198:203–220. doi: 10.1007/978-1-4939-1258-2_13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Wang J., Christison T.T., Misuno K., Lopez L., Huhmer A.F., Huang Y., Hu S. Metabolomic profiling of anionic metabolites in head and neck cancer cells by capillary ion chromatography with Orbitrap mass spectrometry. Anal. Chem. 2014;86:5116–5124. doi: 10.1021/ac500951v. [DOI] [PubMed] [Google Scholar]
- 66.Wang M., Fang H., Han X. Shotgun lipidomics analysis of 4-hydroxyalkenal species directly from lipid extracts after one-step in situ derivatization. Anal. Chem. 2012;84:4580–4586. doi: 10.1021/ac300695p. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Han X., Yang K., Gross R.W. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom. Rev. 2012;31:134–178. doi: 10.1002/mas.20342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Leiserowitz G.S., Lebrilla C., Miyamoto S., An H.J., Duong H., Kirmiz C., Li B., Liu H., Lam K.S. Glycomics analysis of serum: A potential new biomarker for ovarian cancer? Int. J. Gynecol. Cancer. 2008;18:470–475. doi: 10.1111/j.1525-1438.2007.01028.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Kirmiz C., Li B., An H.J., Clowers B.H., Chew H.K., Lam K.S., Ferrige A., Alecio R., Borowsky A.D., Sulaimon S., Lebrilla C.B., Miyamoto S. A serum glycomics approach to breast cancer biomarkers. Mol. Cell. Proteom. 2007;6:43–55. doi: 10.1074/mcp.M600171-MCP200. [DOI] [PubMed] [Google Scholar]
- 70.Dalpathado D.S., Irungu J., Go E.P., Butnev V.Y., Norton K., Bousfield G.R., Desaire H. Comparative glycomics of the glycoprotein follicle stimulating hormone: Glycopeptide analysis of isolates from two mammalian species. Biochemistry. 2006;45:8665–8673. doi: 10.1021/bi060435k. [DOI] [PubMed] [Google Scholar]
- 71.Senyuva H.Z., Gokmen V., Sarikaya E.A. Future perspectives in Orbitrap™-high-resolution mass spectrometry in food analysis: A review. Food Addit. Contam. Part A. 2015;32:1568–1606. doi: 10.1080/19440049.2015.1057240. [DOI] [PubMed] [Google Scholar]
- 72.Rubert J., Zachariasova M., Hajslova J. Advances in high-resolution mass spectrometry based on metabolomics studies for food—A review. Food Addit. Contam. Part A. 2015;32:1685–1708. doi: 10.1080/19440049.2015.1084539. [DOI] [PubMed] [Google Scholar]
- 73.Rizzuti A., Aguilera-Saez L.M., Gallo V., Cafagna I., Mastrorilli P., Latronico M., Pacifico A., Matarrese A.M., Ferrara G. On the use of Ethephon as abscising agent in cv. Crimson Seedless table grape production: Combination of Fruit Detachment Force, Fruit Drop and metabolomics. Food Chem. 2015;171:341–350. doi: 10.1016/j.foodchem.2014.08.132. [DOI] [PubMed] [Google Scholar]
- 74.Nielsen K.F., Larsen T.O. The importance of mass spectrometric dereplication in fungal secondary metabolite analysis. Front. Microbiol. 2015;6 doi: 10.3389/fmicb.2015.00071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Wolfender J.L., Marti G., Thomas A., Bertrand S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A. 2015;1382:136–164. doi: 10.1016/j.chroma.2014.10.091. [DOI] [PubMed] [Google Scholar]
- 76.Bundy J.G., Davey M.P., Viant M.R. Environmental metabolomics: A critical review and future perspectives. Metabolomics. 2008;5:3–21. doi: 10.1007/s11306-008-0152-0. [DOI] [Google Scholar]
- 77.Lankadurai B.P., Nagato E.G., Simpson M.J. Environmental metabolomics: An emerging approach to study organism responses to environmental stressors. Environ. Rev. 2013;21:180–205. doi: 10.1139/er-2013-0011. [DOI] [Google Scholar]
- 78.Drexler D.M., Reily M.D., Shipkova P.A. Advances in mass spectrometry applied to pharmaceutical metabolomics. Anal. Bioanal. Chem. 2011;399:2645–2653. doi: 10.1007/s00216-010-4370-8. [DOI] [PubMed] [Google Scholar]
- 79.Raro M., Ibanez M., Gil R., Fabregat A., Tudela E., Deventer K., Ventura R., Segura J., Marcos J., Kotronoulas A., et al. Untargeted metabolomics in doping control: Detection of new markers of testosterone misuse by ultrahigh performance liquid chromatography coupled to high-resolution mass spectrometry. Anal. Chem. 2015;87:8373–8380. doi: 10.1021/acs.analchem.5b02254. [DOI] [PubMed] [Google Scholar]
- 80.Allen J., Davey H.M., Broadhurst D., Heald J.K., Rowland J.J., Oliver S.G., Kell D.B. High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat. Biotechnol. 2003;21:692–696. doi: 10.1038/nbt823. [DOI] [PubMed] [Google Scholar]
- 81.Klose C., Tarasov K. Profiling of yeast lipids by shotgun lipidomics. Methods Mol. Biol. 2016;1361:309–324. doi: 10.1007/978-1-4939-3079-1_17. [DOI] [PubMed] [Google Scholar]
- 82.Wang C., Wang M., Han X. Comprehensive and quantitative analysis of lysophospholipid molecular species present in obese mouse liver by shotgun lipidomics. Anal. Chem. 2015;87:4879–4887. doi: 10.1021/acs.analchem.5b00410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Surma M.A., Herzog R., Vasilj A., Klose C., Christinat N., Morin-Rivron D., Simons K., Masoodi M., Sampaio J.L. An automated shotgun lipidomics platform for high throughput, comprehensive, and quantitative analysis of blood plasma intact lipids. Eur. J. Lipid Sci. Technol. 2015;117:1540–1549. doi: 10.1002/ejlt.201500145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Papan C., Penkov S., Herzog R., Thiele C., Kurzchalia T., Shevchenko A. Systematic screening for novel lipids by shotgun lipidomics. Anal. Chem. 2014;86:2703–2710. doi: 10.1021/ac404083u. [DOI] [PubMed] [Google Scholar]
- 85.Lintonen T.P., Baker P.R., Suoniemi M., Ubhi B.K., Koistinen K.M., Duchoslav E., Campbell J.L., Ekroos K. Differential mobility spectrometry-driven shotgun lipidomics. Anal. Chem. 2014;86:9662–9669. doi: 10.1021/ac5021744. [DOI] [PubMed] [Google Scholar]
- 86.Bhattacharya S.K. Recent advances in shotgun lipidomics and their implication for vision research and ophthalmology. Curr. Eye Res. 2013;38:417–427. doi: 10.3109/02713683.2012.760742. [DOI] [PubMed] [Google Scholar]
- 87.Wang J.N., Zhou Y., Zhu T.Y., Wang X., Guo Y.L. Prediction of acute cellular renal allograft rejection by urinary metabolomics using MALDI-FTMS. J. Proteome Res. 2008;7:3597–3601. doi: 10.1021/pr800092f. [DOI] [PubMed] [Google Scholar]
- 88.Wang J., Zhou Y., Xu M., Rong R., Guo Y., Zhu T. Urinary metabolomics in monitoring acute tubular injury of renal allografts: A preliminary report. Transplant. Proc. 2011;43:3738–3742. doi: 10.1016/j.transproceed.2011.08.109. [DOI] [PubMed] [Google Scholar]
- 89.Grata E., Boccard J., Glauser G., Carrupt P.A., Farmer E.E., Wolfender J.L., Rudaz S. Development of a two-step screening ESI-TOF-MS method for rapid determination of significant stress-induced metabolome modifications in plant leaf extracts: The wound response in Arabidopsis thaliana as a case study. J. Sep. Sci. 2007;30:2268–2278. doi: 10.1002/jssc.200700143. [DOI] [PubMed] [Google Scholar]
- 90.Shuman J.L., Cortes D.F., Armenta J.M., Pokrzywa R.M., Mendes P., Shulaev V. Plant metabolomics by GC-MS and differential analysis. Methods Mol. Biol. 2011;678:229–246. doi: 10.1007/978-1-60761-682-5_17. [DOI] [PubMed] [Google Scholar]
- 91.Shulaev V., Cortes D., Miller G., Mittler R. Metabolomics for plant stress response. Physiol. Plant. 2008;132:199–208. doi: 10.1111/j.1399-3054.2007.01025.x. [DOI] [PubMed] [Google Scholar]
- 92.Shulaev V. Metabolomics technology and bioinformatics. Brief. Bioinform. 2006;7:128–139. doi: 10.1093/bib/bbl012. [DOI] [PubMed] [Google Scholar]
- 93.Hu C., van Dommelen J., van der Heijden R., Spijksma G., Reijmers T.H., Wang M., Slee E., Lu X., Xu G., van der Greef J., et al. RPLC-ion-trap-FTMS method for lipid profiling of plasma: Method validation and application to p53 mutant mouse model. J. Proteome Res. 2008;7:4982–4991. doi: 10.1021/pr800373m. [DOI] [PubMed] [Google Scholar]
- 94.Hummel J., Segu S., Li Y., Irgang S., Jueppner J., Giavalisco P. Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids. Front. Plant Sci. 2011;2 doi: 10.3389/fpls.2011.00054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Alexandre-Gouabau M.C., Courant F., Moyon T., Kuster A., le Gall G., Tea I., Antignac J.P., Darmaun D. Maternal and cord blood LC-HRMS metabolomics reveal alterations in energy and polyamine metabolism, and oxidative stress in very-low birth weight infants. J. Proteome Res. 2013;12:2764–2778. doi: 10.1021/pr400122v. [DOI] [PubMed] [Google Scholar]
- 96.Arroyo-Manzanares N., di Mavungu J.D., Uka V., Malysheva S.V., Cary J.W., Ehrlich K.C., Vanhaecke L., Bhatnagar D., de Saeger S. Use of UHPLC high-resolution Orbitrap mass spectrometry to investigate the genes involved in the production of secondary metabolites in Aspergillus flavus. Food Addit. Contam. Part A. 2015;32:1656–1673. doi: 10.1080/19440049.2015.1071499. [DOI] [PubMed] [Google Scholar]
- 97.Bessonneau V., Bojko B., Pawliszyn J. Analysis of human saliva metabolome by direct immersion solid-phase microextraction LC and benchtop orbitrap MS. Bioanalysis. 2013;5:783–792. doi: 10.4155/bio.13.35. [DOI] [PubMed] [Google Scholar]
- 98.Bobeldijk I., Hekman M., de Vries-van der Weij J., Coulier L., Ramaker R., Kleemann R., Kooistra T., Rubingh C., Freidig A., Verheij E. Quantitative profiling of bile acids in biofluids and tissues based on accurate mass high resolution LC-FT-MS: Compound class targeting in a metabolomics workflow. J. Chromatogr. B. 2008;871:306–313. doi: 10.1016/j.jchromb.2008.05.008. [DOI] [PubMed] [Google Scholar]
- 99.Boyard-Kieken F., Dervilly-Pinel G., Garcia P., Paris A.C., Popot M.A., le Bizec B., Bonnaire Y. Comparison of different liquid chromatography stationary phases in LC-HRMS metabolomics for the detection of recombinant growth hormone doping control. J. Sep. Sci. 2011;34:3493–3501. doi: 10.1002/jssc.201100223. [DOI] [PubMed] [Google Scholar]
- 100.Bueschl C., Krska R., Kluger B., Schuhmacher R. Isotopic labeling-assisted metabolomics using LC-MS. Anal. Bioanal. Chem. 2013;405:27–33. doi: 10.1007/s00216-012-6375-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Du L.N., Xie T., Xu J.Y., Kang A., Di L.Q., Shan J.J., Wang S.C. A metabolomics approach to studying the effects of Jinxin oral liquid on RSV-infected mice using UPLC/LTQ-Orbitrap mass spectrometry. J. Ethnopharmacol. 2015;174:25–36. doi: 10.1016/j.jep.2015.07.040. [DOI] [PubMed] [Google Scholar]
- 102.Gertsman I., Gangoiti J.A., Barshop B.A. Validation of a dual LC-HRMS platform for clinical metabolic diagnosis in serum, bridging quantitative analysis and untargeted metabolomics. Metabolomics. 2014;10:312–323. doi: 10.1007/s11306-013-0582-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Guo X., Lankmayr E. Multidimensional approaches in LC and MS for phospholipid bioanalysis. Bioanalysis. 2010;2:1109–1123. doi: 10.4155/bio.10.52. [DOI] [PubMed] [Google Scholar]
- 104.Kieken F., Pinel G., Antignac J.P., Monteau F., Christelle Paris A., Popot M.A., Bonnaire Y., Le Bizec B. Development of a metabonomic approach based on LC-ESI-HRMS measurements for profiling of metabolic changes induced by recombinant equine growth hormone in horse urine. Anal. Bioanal. Chem. 2009;394:2119–2128. doi: 10.1007/s00216-009-2912-8. [DOI] [PubMed] [Google Scholar]
- 105.Kluger B., Bueschl C., Neumann N., Stuckler R., Doppler M., Chassy A.W., Waterhouse A.L., Rechthaler J., Kampleitner N., Thallinger G.G., et al. Untargeted profiling of tracer-derived metabolites using stable isotopic labeling and fast polarity-switching LC-ESI-HRMS. Anal. Chem. 2014;86:11533–11537. doi: 10.1021/ac503290j. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Kokkotou K., Ioannou E., Nomikou M., Pitterl F., Vonaparti A., Siapi E., Zervou M., Roussis V. An integrated approach using UHPLC-PDA-HRMS and 2D HSQC NMR for the metabolic profiling of the red alga Laurencia: Dereplication and tracing of natural products. Phytochemistry. 2014;108:208–219. doi: 10.1016/j.phytochem.2014.10.007. [DOI] [PubMed] [Google Scholar]
- 107.Li L., Zhang F., Zaia J., Linhardt R.J. Top-down approach for the direct characterization of low molecular weight heparins using LC-FT-MS. Anal. Chem. 2012;84:8822–8829. doi: 10.1021/ac302232c. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Lu W., Bennett B.D., Rabinowitz J.D. Analytical strategies for LC-MS-based targeted metabolomics. J. Chromatogr. B. 2008;871:236–242. doi: 10.1016/j.jchromb.2008.04.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Madji Hounoum B., Blasco H., Nadal-Desbarats L., Dieme B., Montigny F., Andres C.R., Emond P., Mavel S. Analytical methodology for metabolomics study of adherent mammalian cells using NMR, GC-MS and LC-HRMS. Anal. Bioanal. Chem. 2015;407:8861–8872. doi: 10.1007/s00216-015-9047-x. [DOI] [PubMed] [Google Scholar]
- 110.Nemkov T., D’Alessandro A., Hansen K.C. Three-minute method for amino acid analysis by UHPLC and high-resolution quadrupole orbitrap mass spectrometry. Amino Acids. 2015;47:2345–2357. doi: 10.1007/s00726-015-2019-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Neumann N.K., Lehner S.M., Kluger B., Bueschl C., Sedelmaier K., Lemmens M., Krska R., Schuhmacher R. Automated LC-HRMS(/MS) approach for the annotation of fragment ions derived from stable isotope labeling-assisted untargeted metabolomics. Anal. Chem. 2014;86:7320–7327. doi: 10.1021/ac501358z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Ni Z., Milic I., Fedorova M. Identification of carbonylated lipids from different phospholipid classes by shotgun and LC-MS lipidomics. Anal. Bioanal. Chem. 2015;407:5161–5173. doi: 10.1007/s00216-015-8536-2. [DOI] [PubMed] [Google Scholar]
- 113.Orellana G., Vanden Bussche J., van Meulebroek L., Vandegehuchte M., Janssen C., Vanhaecke L. Validation of a confirmatory method for lipophilic marine toxins in shellfish using UHPLC-HR-Orbitrap MS. Anal. Bioanal. Chem. 2014;406:5303–5312. doi: 10.1007/s00216-014-7958-6. [DOI] [PubMed] [Google Scholar]
- 114.Rochat B. Quantitative/qualitative analysis using LC-HRMS: The fundamental step forward for clinical laboratories and clinical practice. Bioanalysis. 2012;4:1709–1711. doi: 10.4155/bio.12.159. [DOI] [PubMed] [Google Scholar]
- 115.Stojiljkovic N., Paris A., Garcia P., Popot M.A., Bonnaire Y., Tabet J.C., Junot C. Evaluation of horse urine sample preparation methods for metabolomics using LC coupled to HRMS. Bioanalysis. 2014;6:785–803. doi: 10.4155/bio.13.324. [DOI] [PubMed] [Google Scholar]
- 116.Takahashi H., Morimoto T., Ogasawara N., Kanaya S. AMDORAP: Non-targeted metabolic profiling based on high-resolution LC-MS. BMC Bioinform. 2011;12:259. doi: 10.1186/1471-2105-12-259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Zeng Z., Liu X., Dai W., Yin P., Zhou L., Huang Q., Lin X., Xu G. Ion fusion of high-resolution LC-MS-based metabolomics data to discover more reliable biomarkers. Anal. Chem. 2014;86:3793–3800. doi: 10.1021/ac500878x. [DOI] [PubMed] [Google Scholar]
- 118.Zhou T., Wang M., Cheng H., Cui C., Su S., Xu P., Xue M. UPLC-HRMS based metabolomics reveals the sphingolipids with long fatty chains and olefinic bonds up-regulated in metabolic pathway for hypoxia preconditioning. Chem. Biol. Interact. 2015;242:145–152. doi: 10.1016/j.cbi.2015.09.026. [DOI] [PubMed] [Google Scholar]
- 119.Granafei S., Losito I., Palmisano F., Cataldi T.R. Identification of isobaric lyso-phosphatidylcholines in lipid extracts of gilthead sea bream (Sparus aurata) fillets by hydrophilic interaction liquid chromatography coupled to high-resolution Fourier-transform mass spectrometry. Anal. Bioanal. Chem. 2015;407:6391–6404. doi: 10.1007/s00216-015-8671-9. [DOI] [PubMed] [Google Scholar]
- 120.Damen C.W., Isaac G., Langridge J., Hankemeier T., Vreeken R.J. Enhanced lipid isomer separation in human plasma using reversed-phase UPLC with ion-mobility/high-resolution MS detection. J. Lipid Res. 2014;55:1772–1783. doi: 10.1194/jlr.D047795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Peterson A.C., McAlister G.C., Quarmby S.T., Griep-Raming J., Coon J.J. Development and characterization of a GC-enabled QLT-Orbitrap for high-resolution and high-mass accuracy GC/MS. Anal. Chem. 2010;82:8618–8628. doi: 10.1021/ac101757m. [DOI] [PubMed] [Google Scholar]
- 122.Buck A., Ly A., Balluff B., Sun N., Gorzolka K., Feuchtinger A., Janssen K.P., Kuppen P.J., van de Velde C.J., Weirich G., et al. High-resolution MALDI-FT-ICR MS imaging for the analysis of metabolites from formalin-fixed, paraffin-embedded clinical tissue samples. J. Pathol. 2015;237:123–132. doi: 10.1002/path.4560. [DOI] [PubMed] [Google Scholar]
- 123.Jiao J., Miao A., Zhang Y., Fan Q., Lu Y., Lu H. Imaging phosphorylated peptide distribution in human lens by MALDI MS. Analyst. 2015;140:4284–4290. doi: 10.1039/C5AN00101C. [DOI] [PubMed] [Google Scholar]
- 124.Ronci M., Sharma S., Martin S., Craig J.E., Voelcker N.H. MALDI MS imaging analysis of apolipoprotein E and lysyl oxidase-like 1 in human lens capsules affected by pseudoexfoliation syndrome. J. Proteomics. 2013;82:27–34. doi: 10.1016/j.jprot.2013.01.008. [DOI] [PubMed] [Google Scholar]
- 125.Ronci M., Sharma S., Chataway T., Burdon K.P., Martin S., Craig J.E., Voelcker N.H. MALDI-MS-imaging of whole human lens capsule. J. Proteome Res. 2011;10:3522–3529. doi: 10.1021/pr200148k. [DOI] [PubMed] [Google Scholar]
- 126.Hart P.J., Francese S., Claude E., Woodroofe M.N., Clench M.R. MALDI-MS imaging of lipids in ex vivo human skin. Anal. Bioanal. Chem. 2011;401:115–125. doi: 10.1007/s00216-011-5090-4. [DOI] [PubMed] [Google Scholar]
- 127.Jirasko R., Holcapek M., Kunes M., Svatos A. Distribution study of atorvastatin and its metabolites in rat tissues using combined information from UHPLC/MS and MALDI-Orbitrap-MS imaging. Anal. Bioanal. Chem. 2014;406:4601–4610. doi: 10.1007/s00216-014-7880-y. [DOI] [PubMed] [Google Scholar]
- 128.Kim Y.H., Fujimura Y., Sasaki M., Yang X., Yukihira D., Miura D., Unno Y., Ogata K., Nakajima H., Yamashita S., et al. In situ label-free visualization of orally dosed strictinin within mouse kidney by MALDI-MS imaging. J. Agric. Food Chem. 2014;62:9279–9285. doi: 10.1021/jf503143g. [DOI] [PubMed] [Google Scholar]
- 129.Park E.S., Lee J.H., Hong J.H., Park Y.K., Lee J.W., Lee W.J., Kim K.P., Kim K.H. Phosphatidylcholine alteration identified using MALDI imaging MS in HBV-infected mouse livers and virus-mediated regeneration defects. PLoS ONE. 2014;9:816. doi: 10.1371/journal.pone.0103955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Schulz S., Gerhardt D., Meyer B., Seegel M., Schubach B., Hopf C., Matheis K. DMSO-enhanced MALDI MS imaging with normalization against a deuterated standard for relative quantification of dasatinib in serial mouse pharmacology studies. Anal. Bioanal. Chem. 2013;405:9467–9476. doi: 10.1007/s00216-013-7393-0. [DOI] [PubMed] [Google Scholar]
- 131.Berry K.A., Li B., Reynolds S.D., Barkley R.M., Gijon M.A., Hankin J.A., Henson P.M., Murphy R.C. MALDI imaging MS of phospholipids in the mouse lung. J. Lipid Res. 2011;52:1551–1560. doi: 10.1194/jlr.M015750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Kusari S., Sezgin S., Nigutova K., Cellarova E., Spiteller M. Spatial chemo-profiling of hypericin and related phytochemicals in Hypericum species using MALDI-HRMS imaging. Anal. Bioanal. Chem. 2015;407:4779–4791. doi: 10.1007/s00216-015-8682-6. [DOI] [PubMed] [Google Scholar]
- 133.Horn P.J., Korte A.R., Neogi P.B., Love E., Fuchs J., Strupat K., Borisjuk L., Shulaev V., Lee Y.J., Chapman K.D. Spatial mapping of lipids at cellular resolution in embryos of cotton. Plant Cell. 2012;24:622–636. doi: 10.1105/tpc.111.094581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Horn P.J., Chapman K.D. Lipidomics in situ: Insights into plant lipid metabolism from high resolution spatial maps of metabolites. Prog. Lipid Res. 2014;54:32–52. doi: 10.1016/j.plipres.2014.01.003. [DOI] [PubMed] [Google Scholar]
- 135.Sturtevant D., Lee Y.J., Chapman K.D. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ. Curr Opin Biotechnol. 2016;37:53–60. doi: 10.1016/j.copbio.2015.10.004. [DOI] [PubMed] [Google Scholar]
- 136.Touboul D., Brunelle A. MALDI mass spectrometry imaging of lipids and primary metabolites on rat brain sections. Methods Mol. Biol. 2015;1203:41–48. doi: 10.1007/978-1-4939-1357-2_5. [DOI] [PubMed] [Google Scholar]
- 137.Jadoul L., Longuespee R., Noel A., de Pauw E. A spiked tissue-based approach for quantification of phosphatidylcholines in brain section by MALDI mass spectrometry imaging. Anal. Bioanal. Chem. 2015;407:2095–2106. doi: 10.1007/s00216-014-8232-7. [DOI] [PubMed] [Google Scholar]
- 138.Krasny L., Hoffmann F., Ernst G., Trede D., Alexandrov T., Havlicek V., Guntinas-Lichius O., von Eggeling F., Crecelius A.C. Spatial segmentation of MALDI FT-ICR MSI data: A powerful tool to explore the head and neck tumor in situ lipidome. J. Am. Soc. Mass Spectrom. 2015;26:36–43. doi: 10.1007/s13361-014-1018-5. [DOI] [PubMed] [Google Scholar]
- 139.Wei Y., Zhang Y., Lin Y., Li L., Liu J., Wang Z., Xiong S., Zhao Z. A uniform 2,5-dihydroxybenzoic acid layer as a matrix for MALDI-FTICR MS-based lipidomics. Analyst. 2015;140:1298–1305. doi: 10.1039/C4AN01964D. [DOI] [PubMed] [Google Scholar]
- 140.Ly A., Schone C., Becker M., Rattke J., Meding S., Aichler M., Suckau D., Walch A., Hauck S.M., Ueffing M. High-resolution MALDI mass spectrometric imaging of lipids in the mammalian retina. Histochem. Cell Biol. 2015;143:453–462. doi: 10.1007/s00418-014-1303-1. [DOI] [PubMed] [Google Scholar]
- 141.Wildburger N.C., Wood P.L., Gumin J., Lichti C.F., Emmett M.R., Lang F.F., Nilsson C.L. ESI-MS/MS and MALDI-IMS localization reveal alterations in phosphatidic acid, diacylglycerol, and DHA in glioma stem cell xenografts. J. Proteome Res. 2015;14:2511–2519. doi: 10.1021/acs.jproteome.5b00076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Holcapek M., Cervena B., Cifkova E., Lisa M., Chagovets V., Vostalova J., Bancirova M., Galuszka J., Hill M. Lipidomic analysis of plasma, erythrocytes and lipoprotein fractions of cardiovascular disease patients using UHPLC/MS, MALDI-MS and multivariate data analysis. J. Chromatogr. B. 2015;990:52–63. doi: 10.1016/j.jchromb.2015.03.010. [DOI] [PubMed] [Google Scholar]
- 143.Xu L., Kliman M., Forsythe J.G., Korade Z., Hmelo A.B., Porter N.A., McLean J.A. Profiling and imaging ion mobility-mass spectrometry analysis of cholesterol and 7-dehydrocholesterol in cells via sputtered silver MALDI. J. Am. Soc. Mass Spectrom. 2015;26:924–933. doi: 10.1007/s13361-015-1131-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Korte A.R., Yandeau-Nelson M.D., Nikolau B.J., Lee Y.J. Subcellular-level resolution MALDI-MS imaging of maize leaf metabolites by MALDI-linear ion trap-Orbitrap mass spectrometer. Anal. Bioanal. Chem. 2015;407:2301–2309. doi: 10.1007/s00216-015-8460-5. [DOI] [PubMed] [Google Scholar]
- 145.Gemperline E., Jayaraman D., Maeda J., Ane J.M., Li L. Multifaceted investigation of metabolites during nitrogen fixation in Medicago via high resolution MALDI-MS imaging and ESI-MS. J. Am. Soc. Mass Spectrom. 2015;26:149–158. doi: 10.1007/s13361-014-1010-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146.Barry J.A., Groseclose M.R., Robichaud G., Castellino S., Muddiman D.C. Assessing drug and metabolite detection in liver tissue by UV-MALDI and IR-MALDESI mass spectrometry imaging coupled to FT-ICR MS. Int. J. Mass Spectrom. 2015;377:448–155. doi: 10.1016/j.ijms.2014.05.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.Bhandari D.R., Shen T., Rompp A., Zorn H., Spengler B. Analysis of cyathane-type diterpenoids from Cyathus striatus and Hericium erinaceus by high-resolution MALDI MS imaging. Anal. Bioanal. Chem. 2014;406:695–704. doi: 10.1007/s00216-013-7496-7. [DOI] [PubMed] [Google Scholar]
- 148.Spengler B., Hubert M. Scanning microprobe matrix-assisted laser desorption ionization (SMALDI) mass spectrometry: Instrumentation for sub-micrometer resolved LDI and MALDI surface analysis. J. Am. Soc. Mass Spectrom. 2002;13:735–748. doi: 10.1016/S1044-0305(02)00376-8. [DOI] [PubMed] [Google Scholar]
- 149.Bhandari D.R., Schott M., Rompp A., Vilcinskas A., Spengler B. Metabolite localization by atmospheric pressure high-resolution scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging in whole-body sections and individual organs of the rove beetle Paederus riparius. Anal. Bioanal. Chem. 2015;407:2189–2201. doi: 10.1007/s00216-014-8327-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Schober Y., Schramm T., Spengler B., Rompp A. Protein identification by accurate mass matrix-assisted laser desorption/ionization imaging of tryptic peptides. Rapid Commun. Mass Spectrom. 2011;25:2475–2483. doi: 10.1002/rcm.5135. [DOI] [PubMed] [Google Scholar]
- 151.Rompp A., Guenther S., Takats Z., Spengler B. Mass spectrometry imaging with high resolution in mass and space (HR2 MSI) for reliable investigation of drug compound distributions on the cellular level. Anal. Bioanal. Chem. 2011;401:65–73. doi: 10.1007/s00216-011-4990-7. [DOI] [PubMed] [Google Scholar]
- 152.Comi T.J., Ryu S.W., Perry R.H. Synchronized desorption electrospray ionization mass spectrometry imaging. Anal. Chem. 2016;88:1169–1175. doi: 10.1021/acs.analchem.5b03010. [DOI] [PubMed] [Google Scholar]
- 153.Eberlin L.S. DESI-MS imaging of lipids and metabolites from biological samples. Methods Mol. Biol. 2014;1198:299–311. doi: 10.1007/978-1-4939-1258-2_20. [DOI] [PubMed] [Google Scholar]
- 154.Barry J.A., Robichaud G., Bokhart M.T., Thompson C., Sykes C., Kashuba A.D., Muddiman D.C. Mapping antiretroviral drugs in tissue by IR-MALDESI MSI coupled to the Q Exactive and comparison with LC-MS/MS SRM assay. J. Am. Soc. Mass Spectrom. 2014;25:2038–2047. doi: 10.1007/s13361-014-0884-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Robichaud G., Barry J.A., Garrard K.P., Muddiman D.C. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging source coupled to a FT-ICR mass spectrometer. J. Am. Soc. Mass Spectrom. 2013;24:92–100. doi: 10.1007/s13361-012-0505-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Barry J.A., Muddiman D.C. Global optimization of the infrared matrix-assisted laser desorption electrospray ionization (IR MALDESI) source for mass spectrometry using statistical design of experiments. Rapid Commun. Mass Spectrom. 2011;25:3527–3536. doi: 10.1002/rcm.5262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 157.Ojanperä I., Kolmonen M., Pelander A. Current use of high-resolution mass spectrometry in drug screening relevant to clinical and forensic toxicology and doping control. Anal. Bioanal. Chem. 2012;403:1203–1220. doi: 10.1007/s00216-012-5726-z. [DOI] [PubMed] [Google Scholar]
- 158.Wu A.H., Gerona R., Armenian P., French D., Petrie M., Lynch K.L. Role of liquid chromatography-high-resolution mass spectrometry (LC-HR/MS) in clinical toxicology. Clin. Toxicol. 2012;50:733–742. doi: 10.3109/15563650.2012.713108. [DOI] [PubMed] [Google Scholar]
- 159.Martinez-Dominguez G., Romero-Gonzalez R., Garrido Frenich A. Multi-class methodology to determine pesticides and mycotoxins in green tea and royal jelly supplements by liquid chromatography coupled to Orbitrap high resolution mass spectrometry. Food Chem. 2016;197:907–915. doi: 10.1016/j.foodchem.2015.11.070. [DOI] [PubMed] [Google Scholar]
- 160.Dzuman Z., Zachariasova M., Veprikova Z., Godula M., Hajslova J. Multi-analyte high performance liquid chromatography coupled to high resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids. Anal. Chim. Acta. 2015;863:29–40. doi: 10.1016/j.aca.2015.01.021. [DOI] [PubMed] [Google Scholar]
- 161.De Dominicis E., Commissati I., Suman M. Targeted screening of pesticides, veterinary drugs and mycotoxins in bakery ingredients and food commodities by liquid chromatography-high-resolution single-stage Orbitrap mass spectrometry. J. Mass Spectrom. 2012;47:1232–1241. doi: 10.1002/jms.3074. [DOI] [PubMed] [Google Scholar]
- 162.Lattanzio V.M., Gatta S.D., Godula M., Visconti A. Quantitative analysis of mycotoxins in cereal foods by collision cell fragmentation-high-resolution mass spectrometry: Performance and comparison with triple-stage quadrupole detection. Food Addit. Contam. Part A. 2011;28:1424–1437. doi: 10.1080/19440049.2011.593192. [DOI] [PubMed] [Google Scholar]
- 163.Turnipseed S.B., Lohne J.J., Boison J.O. Review: Application of high resolution mass spectrometry to monitor veterinary drug residues in aquacultured products. J. AOAC Int. 2015;98:550–558. doi: 10.5740/jaoacint.14-265. [DOI] [PubMed] [Google Scholar]
- 164.Munoz K., Schmidt-Heydt M., Stoll D., Diehl D., Ziegler J., Geisen R., Schaumann G.E. Effect of plastic mulching on mycotoxin occurrence and mycobiome abundance in soil samples from asparagus crops. Mycotoxin Res. 2015;31:191–201. doi: 10.1007/s12550-015-0231-9. [DOI] [PubMed] [Google Scholar]
- 165.Lattanzio V.M., Ciasca B., Terzi V., Ghizzoni R., McCormick S.P., Pascale M. Study of the natural occurrence of T-2 and HT-2 toxins and their glucosyl derivatives from field barley to malt by high-resolution Orbitrap mass spectrometry. Food Addit. Contam. Part A. 2015;32:1647–1655. doi: 10.1080/19440049.2015.1048750. [DOI] [PubMed] [Google Scholar]
- 166.Kelman M.J., Renaud J.B., Seifert K.A., Mack J., Sivagnanam K., Yeung K.K., Sumarah M.W. Identification of six new Alternaria sulfoconjugated metabolites by high-resolution neutral loss filtering. Rapid Commun. Mass Spectrom. 2015;29:1805–1810. doi: 10.1002/rcm.7286. [DOI] [PubMed] [Google Scholar]
- 167.Deng Y.Y., Jia L.J., Zhang K., Yin H.W. Combinatorial biochemical and chemical analyses of polychlorinated dibenzo-p-dioxins and dibenzofurans in agricultural soils from Chongming Island, Shanghai, China. Bull. Environ. Contam. Toxicol. 2015;94:183–187. doi: 10.1007/s00128-015-1456-1. [DOI] [PubMed] [Google Scholar]
- 168.Kiss A., Lucio M., Fildier A., Buisson C., Schmitt-Kopplin P., Cren-Olive C. Doping control using high and ultra-high resolution mass spectrometry based non-targeted metabolomics-a case study of salbutamol and budesonide abuse. PLoS ONE. 2013;8:816. doi: 10.1371/journal.pone.0074584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 169.Sun J., Liu X., Yang T., Slovin J., Chen P. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMSn. Food Chem. 2014;146:289–298. doi: 10.1016/j.foodchem.2013.08.089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 170.Walker A., Lucio M., Pfitzner B., Scheerer M.F., Neschen S., de Angelis M.H., Hartmann A., Schmitt-Kopplin P. Importance of sulfur-containing metabolites in discriminating fecal extracts between normal and type-2 diabetic mice. J. Proteome Res. 2014;13:4220–4231. doi: 10.1021/pr500046b. [DOI] [PubMed] [Google Scholar]
- 171.Walker A., Pfitzner B., Neschen S., Kahle M., Harir M., Lucio M., Moritz F., Tziotis D., Witting M., Rothballer M., et al. Distinct signatures of host-microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet. ISME J. 2014;8:2380–2396. doi: 10.1038/ismej.2014.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 172.Nacher-Mestre J., Ibanez M., Serrano R., Perez-Sanchez J., Hernandez F. Qualitative screening of undesirable compounds from feeds to fish by liquid chromatography coupled to mass spectrometry. J. Agric. Food Chem. 2013;61:2077–2087. doi: 10.1021/jf304478n. [DOI] [PubMed] [Google Scholar]
- 173.Winkler J. High levels of dioxin-like PCBs found in organic-farmed eggs caused by coating materials of asbestos-cement fiber plates: A case study. Environ. Int. 2015;80:72–78. doi: 10.1016/j.envint.2015.03.005. [DOI] [PubMed] [Google Scholar]
- 174.Solliec M., Roy-Lachapelle A., Sauve S. Quantitative performance of liquid chromatography coupled to Q-Exactive high resolution mass spectrometry (HRMS) for the analysis of tetracyclines in a complex matrix. Anal. Chim. Acta. 2015;853:415–424. doi: 10.1016/j.aca.2014.10.037. [DOI] [PubMed] [Google Scholar]
- 175.Seiwert B., Golan-Rozen N., Weidauer C., Riemenschneider C., Chefetz B., Hadar Y., Reemtsma T. Electrochemistry combined with LC-HRMS: Elucidating transformation products of the recalcitrant pharmaceutical compound carbamazepine generated by the white-rot fungus Pleurotus ostreatus. Environ. Sci. Technol. 2015;49:12342–12350. doi: 10.1021/acs.est.5b02229. [DOI] [PubMed] [Google Scholar]
- 176.Matsumoto R., Tu N.P., Haruta S., Kawano M., Takeuchi I. Polychlorinated biphenyl (PCB) concentrations and congener composition in masu salmon from Japan: A study of all 209 PCB congeners by high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) Mar. Pollut. Bull. 2014;85:549–557. doi: 10.1016/j.marpolbul.2014.04.021. [DOI] [PubMed] [Google Scholar]
- 177.Kakimoto K., Nagayoshi H., Konishi Y., Kajimura K., Ohura T., Hayakawa K., Toriba A. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia. Chemosphere. 2014;111:40–46. doi: 10.1016/j.chemosphere.2014.03.072. [DOI] [PubMed] [Google Scholar]
- 178.Song Y., Wu N., Han J., Shen H., Tan Y., Ding G., Xiang J., Tao H., Jin S. Levels of PCDD/Fs and DL-PCBs in selected foods and estimated dietary intake for the local residents of Luqiao and Yuhang in Zhejiang, China. Chemosphere. 2011;85:329–334. doi: 10.1016/j.chemosphere.2011.06.094. [DOI] [PubMed] [Google Scholar]
- 179.Woudneh M.B., Ou Z., Sekela M., Tuominen T., Gledhill M. Pesticide multiresidues in waters of the Lower Fraser Valley, British Columbia, Canada. Part I. Surface water. J. Environ. Qual. 2009;38:940–947. doi: 10.2134/jeq2007.0524. [DOI] [PubMed] [Google Scholar]
- 180.Katajamaa M., Oresic M. Data processing for mass spectrometry-based metabolomics. J Chromatogr A. 2007;1158:318–328. doi: 10.1016/j.chroma.2007.04.021. [DOI] [PubMed] [Google Scholar]
- 181.Madsen R., Lundstedt T., Trygg J. Chemometrics in metabolomics—A review in human disease diagnosis. Anal. Chim. Acta. 2010;659:23–33. doi: 10.1016/j.aca.2009.11.042. [DOI] [PubMed] [Google Scholar]
- 182.Blekherman G., Laubenbacher R., Cortes D.F., Mendes P., Torti F.M., Akman S., Torti S.V., Shulaev V. Bioinformatics tools for cancer metabolomics. Metabolomics. 2011;7:329–343. doi: 10.1007/s11306-010-0270-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 183.Markley J.L., Anderson M.E., Cui Q., Eghbalnia H.R., Lewis I.A., Hegeman A.D., Li J., Schulte C.F., Sussman M.R., Westler W.M., et al. New bioinformatics resources for metabolomics. Pac. Symp. Biocomput. 2007;12:157–168. [PubMed] [Google Scholar]
- 184.Gougeon R.D., Lucio M., Frommberger M., Peyron D., Chassagne D., Alexandre H., Feuillat F., Voilley A., Cayot P., Gebefugi I., et al. The chemodiversity of wines can reveal a metabologeography expression of cooperage oak wood. Proc. Natl. Acad. Sci. USA. 2009;106:9174–9179. doi: 10.1073/pnas.0901100106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 185.Roullier-Gall C., Witting M., Tziotis D., Ruf A., Gougeon R.D., Schmitt-Kopplin P. Integrating analytical resolutions in non-targeted wine metabolomics. Tetrahedron. 2015;71:2983–2990. doi: 10.1016/j.tet.2015.02.054. [DOI] [Google Scholar]
- 186.Longnecker K., Futrelle J., Coburn E., Kido Soule M.C., Kujawinski E.B. Environmental metabolomics: Databases and tools for data analysis. Mar. Chem. 2015;177:366–373. doi: 10.1016/j.marchem.2015.06.012. [DOI] [Google Scholar]
- 187.Roux A., Xu Y., Heilier J.F., Olivier M.F., Ezan E., Tabet J.C., Junot C. Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-Orbitrap mass spectrometer. Anal. Chem. 2012;84:6429–6437. doi: 10.1021/ac300829f. [DOI] [PubMed] [Google Scholar]
- 188.Far J., Delvaux C., Kune C., Eppe G., de Pauw E. The use of ion mobility mass spectrometry for isomer composition determination extracted from Se-rich yeast. Anal. Chem. 2014;86:11246–11254. doi: 10.1021/ac503142u. [DOI] [PubMed] [Google Scholar]
- 189.Sumner L.W., Amberg A., Barrett D., Beale M.H., Beger R., Daykin C.A., Fan T.W., Fiehn O., Goodacre R., Griffin J.L., et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI) Metabolomics. 2007;3:211–221. doi: 10.1007/s11306-007-0082-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 190.Bolton E.E., Wang Y., Thiessen P.A., Bryant S.H. Chapter 12—PubChem: Integrated platform of small molecules and biological activities. In: Ralph A.W., David C.S., editors. Annual Reports in Computational Chemistry. Vol. 4. Elsevier; Amsterdam, The Netherlands: 2008. pp. 217–241. [Google Scholar]
- 191.Kim S., Thiessen P.A., Bolton E.E., Chen J., Fu G., Gindulyte A., Han L., He J., He S., Shoemaker B.A., et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44:D1202–D1213. doi: 10.1093/nar/gkv951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 192.The PubChem Project. [(accessed on 24 May 2016)]; Available online: https://pubchem.ncbi.nlm.nih.gov.
- 193.Little J.L., Williams A.J., Pshenichnov A., Tkachenko V. Identification of “known unknowns” utilizing accurate mass data and ChemSpider. J. Am. Soc. Mass Spectrom. 2012;23:179–185. doi: 10.1007/s13361-011-0265-y. [DOI] [PubMed] [Google Scholar]
- 194.Pence H.E., Williams A. ChemSpider: An online chemical information resource. J. Chem. Educ. 2010;87:1123–1124. doi: 10.1021/ed100697w. [DOI] [Google Scholar]
- 195.ChemSpider. [(accessed on 24 May 2016)]. Available online: http://www.chemspider.com.
- 196.Scripps Center for Metabolomics and Mass Spectrometry. [(accessed on 24 May 2016)]. Available online: https://metlin.scripps.edu.
- 197.Tautenhahn R., Cho K., Uritboonthai W., Zhu Z., Patti G.J., Siuzdak G. An accelerated workflow for untargeted metabolomics using the METLIN database. Nat. Biotechnol. 2012;30:826–828. doi: 10.1038/nbt.2348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 198.Sana T.R., Roark J.C., Li X., Waddell K., Fischer S.M. Molecular formula and METLIN personal metabolite database matching applied to the identification of compounds generated by LC/TOF-MS. J. Biomol. Tech. 2008;19:258–266. [PMC free article] [PubMed] [Google Scholar]
- 199.Smith C.A., O’Maille G., Want E.J., Qin C., Trauger S.A., Brandon T.R., Custodio D.E., Abagyan R., Siuzdak G. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2005;27:747–751. doi: 10.1097/01.ftd.0000179845.53213.39. [DOI] [PubMed] [Google Scholar]
- 200.Wagele B., Witting M., Schmitt-Kopplin P., Suhre K. MassTRIX reloaded: Combined analysis and visualization of transcriptome and metabolome data. PLoS ONE. 2012;7:816. doi: 10.1371/journal.pone.0039860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 201.Suhre K., Schmitt-Kopplin P. MassTRIX: Mass translator into pathways. Nucleic Acids Res. 2008;36:W481–W484. doi: 10.1093/nar/gkn194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 202.Witting M., Schmitt-Kopplin P. Transcriptome and metabolome data integration—Technical perquisites for successful data fusion and visualization. In: Carolina Simó A.C., Virginia G.-C., editors. Comprehensive Analytical Chemistry. Elsevier; Newnes, Australia: 2014. pp. 421–442. [Google Scholar]
- 203.Tziotis D., Hertkorn N., Schmitt-Kopplin P. Kendrick-analogous network visualisation of ion cyclotron resonance Fourier transform mass spectra: Improved options for the assignment of elemental compositions and the classification of organic molecular complexity. Eur. J. Mass Spectrom. 2011;17:415–421. doi: 10.1255/ejms.1135. [DOI] [PubMed] [Google Scholar]
- 204.Forcisi S., Moritz F., Lucio M., Lehmann R., Stefan N., Schmitt-Kopplin P. Solutions for low and high accuracy mass spectrometric data matching: A data-driven annotation strategy in nontargeted metabolomics. Anal. Chem. 2015;87:8917–8924. doi: 10.1021/acs.analchem.5b02049. [DOI] [PubMed] [Google Scholar]
- 205.Wixon J., Kell D. The Kyoto encyclopedia of genes and genomes—KEGG. Yeast. 2000;17:48–55. doi: 10.1002/(SICI)1097-0061(200004)17:1<48::AID-YEA2>3.0.CO;2-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 206.Kanehisa M., Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 207.Cui Q., Lewis I.A., Hegeman A.D., Anderson M.E., Li J., Schulte C.F., Westler W.M., Eghbalnia H.R., Sussman M.R., Markley J.L. Metabolite identification via the madison metabolomics consortium database. Nat. Biotechnol. 2008;26:162–164. doi: 10.1038/nbt0208-162. [DOI] [PubMed] [Google Scholar]
- 208.Wishart D.S., Knox C., Guo A.C., Eisner R., Young N., Gautam B., Hau D.D., Psychogios N., Dong E., Bouatra S., et al. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 2009;37:D603–D610. doi: 10.1093/nar/gkn810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 209.Wishart D.S., Tzur D., Knox C., Eisner R., Guo A.C., Young N., Cheng D., Jewell K., Arndt D., Sawhney S., et al. HMDB: The human metabolome database. Nucleic Acids Res. 2007;35:D521–D526. doi: 10.1093/nar/gkl923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 210.Fahy E., Sud M., Cotter D., Subramaniam S. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 2007;35:W606–W612. doi: 10.1093/nar/gkm324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 211.Sud M., Fahy E., Cotter D., Brown A., Dennis E.A., Glass C.K., Merrill A.H., Jr., Murphy R.C., Raetz C.R., Russell D.W., et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007;35:D527–D532. doi: 10.1093/nar/gkl838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 212.Zhou B., Wang J., Ressom H.W. MetaboSearch: Tool for mass-based metabolite identification using multiple databases. PLoS ONE. 2012;7:816. doi: 10.1371/journal.pone.0040096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 213.Taguchi R., Ishikawa M. Precise and global identification of phospholipid molecular species by an Orbitrap mass spectrometer and automated search engine Lipid Search. J. Chromatogr. A. 2010;1217:4229–4239. doi: 10.1016/j.chroma.2010.04.034. [DOI] [PubMed] [Google Scholar]
- 214.Herzog R., Schwudke D., Shevchenko A. LipidXplorer: Software for quantitative shotgun lipidomics compatible with multiple mass spectrometry platforms. Curr. Protoc. Bioinform. 2013;11:14.12:1–14.12:30. doi: 10.1002/0471250953.bi1412s43. [DOI] [PubMed] [Google Scholar]
- 215.Narvaez-Rivas M., Zhang Q. Comprehensive untargeted lipidomic analysis using core-shell C30 particle column and high field orbitrap mass spectrometer. J. Chromatogr. A. 2016;1440:123–134. doi: 10.1016/j.chroma.2016.02.054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 216.Breitkopf S.B., Yuan M., Helenius K.P., Lyssiotis C.A., Asara J.M. Triomics analysis of imatinib-treated myeloma cells connects kinase inhibition to RNA processing and decreased lipid biosynthesis. Anal. Chem. 2015;87:10995–11006. doi: 10.1021/acs.analchem.5b03040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 217.Tafesse F.G., Rashidfarrokhi A., Schmidt F.I., Freinkman E., Dougan S., Dougan M., Esteban A., Maruyama T., Strijbis K., Ploegh H.L. Disruption of sphingolipid biosynthesis blocks phagocytosis of Candida albicans. PLoS Pathog. 2015;11:816. doi: 10.1371/journal.ppat.1005188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 218.Trevino M.B., Machida Y., Hallinger D.R., Garcia E., Christensen A., Dutta S., Peake D.A., Ikeda Y., Imai Y. Perilipin 5 regulates islet lipid metabolism and insulin secretion in a cAMP-dependent manner: Implication of its role in the postprandial insulin secretion. Diabetes. 2015;64:1299–1310. doi: 10.2337/db14-0559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 219.Yamada T., Uchikata T., Sakamoto S., Yokoi Y., Fukusaki E., Bamba T. Development of a lipid profiling system using reverse-phase liquid chromatography coupled to high-resolution mass spectrometry with rapid polarity switching and an automated lipid identification software. J. Chromatogr. A. 2013;1292:211–218. doi: 10.1016/j.chroma.2013.01.078. [DOI] [PubMed] [Google Scholar]
- 220.Song H., Hsu F.F., Ladenson J., Turk J. Algorithm for processing raw mass spectrometric data to identify and quantitate complex lipid molecular species in mixtures by data-dependent scanning and fragment ion database searching. J. Am. Soc. Mass Spectrom. 2007;18:1848–1858. doi: 10.1016/j.jasms.2007.07.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 221.Haimi P., Uphoff A., Hermansson M., Somerharju P. Software tools for analysis of mass spectrometric lipidome data. Anal. Chem. 2006;78:8324–8331. doi: 10.1021/ac061390w. [DOI] [PubMed] [Google Scholar]
- 222.Leavell M.D., Leary J.A. Fatty acid analysis tool (FAAT): An FT-ICR MS lipid analysis algorithm. Anal. Chem. 2006;78:5497–5503. doi: 10.1021/ac0604179. [DOI] [PubMed] [Google Scholar]
- 223.Hubner G., Crone C., Lindner B. lipID—A software tool for automated assignment of lipids in mass spectra. J. Mass Spectrom. 2009;44:1676–1683. doi: 10.1002/jms.1673. [DOI] [PubMed] [Google Scholar]
- 224.Song H., Ladenson J., Turk J. Algorithms for automatic processing of data from mass spectrometric analyses of lipids. J. Chromatogr. B. 2009;877:2847–2854. doi: 10.1016/j.jchromb.2008.12.043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 225.Kasper P.T., Rojas-Cherto M., Mistrik R., Reijmers T., Hankemeier T., Vreeken R.J. Fragmentation trees for the structural characterisation of metabolites. Rapid Commun. Mass Spectrom. 2012;26:2275–2286. doi: 10.1002/rcm.6340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 226.Sheldon M.T., Mistrik R., Croley T.R. Determination of ion structures in structurally related compounds using precursor ion fingerprinting. J. Am. Soc. Mass Spectrom. 2009;20:370–376. doi: 10.1016/j.jasms.2008.10.017. [DOI] [PubMed] [Google Scholar]
- 227.mzCloud—Advanced Mass Spectral Database. [(accessed on 24 May 2016)]. Available online: https://www.mzcloud.org.