Abstract
We have compared the DNA sequences of nine mammalian genes for cytochrome c oxidase subunit IV (COX4 genes)--four expressed genes (human, bovine, rat, and mouse) and five pseudogenes (human, chimpanzee, orangutan, squirrel monkey, and bovine)--and constructed the sequence of the ancestral mammalian COX4 gene. By analyzing these sequences to determine the pattern and rate of nucleotide substitution in each branch of the evolutionary tree, we deduced that the human gene has evolved rapidly since the origin of the primate pseudogene approximately 41 million years ago, and we discuss the suggestion that this results from coevolution of nuclear and mitochondrial genes for cytochrome c oxidase.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachman N. J., Lomax M. I., Grossman L. I. Two bovine genes for cytochrome c oxidase subunit IV: a processed pseudogene and an expressed gene. Gene. 1987;55(2-3):219–229. doi: 10.1016/0378-1119(87)90282-4. [DOI] [PubMed] [Google Scholar]
- Britten R. J. Rates of DNA sequence evolution differ between taxonomic groups. Science. 1986 Mar 21;231(4744):1393–1398. doi: 10.1126/science.3082006. [DOI] [PubMed] [Google Scholar]
- Brown W. M., Prager E. M., Wang A., Wilson A. C. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol. 1982;18(4):225–239. doi: 10.1007/BF01734101. [DOI] [PubMed] [Google Scholar]
- Cann R. L., Brown W. M., Wilson A. C. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics. 1984 Mar;106(3):479–499. doi: 10.1093/genetics/106.3.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Easteal S. The relative rate of DNA evolution in primates. Mol Biol Evol. 1991 Jan;8(1):115–127. doi: 10.1093/oxfordjournals.molbev.a040632. [DOI] [PubMed] [Google Scholar]
- Evans M. J., Scarpulla R. C. The human somatic cytochrome c gene: two classes of processed pseudogenes demarcate a period of rapid molecular evolution. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9625–9629. doi: 10.1073/pnas.85.24.9625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ewart G., Lightowlers R., Zhang Y. Z., Balan V. J., Kennaway N., Capaldi R. A. Tissue specificity and defects in human cytochrome c oxidase. Biochim Biophys Acta. 1990 Jul 25;1018(2-3):223–224. doi: 10.1016/0005-2728(90)90253-z. [DOI] [PubMed] [Google Scholar]
- Goodman M. Rates of molecular evolution: the hominoid slowdown. Bioessays. 1985 Jul;3(1):9–14. doi: 10.1002/bies.950030104. [DOI] [PubMed] [Google Scholar]
- Gopalan G., Droste M., Kadenbach B. Nucleotide sequence of cDNA encoding subunit IV of cytochrome c oxidase from fetal rat liver. Nucleic Acids Res. 1989 Jun 12;17(11):4376–4376. doi: 10.1093/nar/17.11.4376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grossman L. I., Akamatsu M. Nucleotide sequence of a mouse cDNA for subunit IV of cytochrome c oxidase. Nucleic Acids Res. 1990 Nov 11;18(21):6454–6454. doi: 10.1093/nar/18.21.6454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koop B. F., Tagle D. A., Goodman M., Slightom J. L. A molecular view of primate phylogeny and important systematic and evolutionary questions. Mol Biol Evol. 1989 Nov;6(6):580–612. doi: 10.1093/oxfordjournals.molbev.a040574. [DOI] [PubMed] [Google Scholar]
- Kuhn-Nentwig L., Kadenbach B. Immunological identification of four different polypeptides in 'subunit VII' of mammalian cytochrome c oxidase. FEBS Lett. 1984 Jul 9;172(2):189–192. doi: 10.1016/0014-5793(84)81123-0. [DOI] [PubMed] [Google Scholar]
- Li W. H., Gouy M., Sharp P. M., O'hUigin C., Yang Y. W. Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6703–6707. doi: 10.1073/pnas.87.17.6703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li W. H., Tanimura M. The molecular clock runs more slowly in man than in apes and monkeys. Nature. 1987 Mar 5;326(6108):93–96. doi: 10.1038/326093a0. [DOI] [PubMed] [Google Scholar]
- Lightowlers R., Ewart G., Aggeler R., Zhang Y. Z., Calavetta L., Capaldi R. A. Isolation and characterization of the cDNAs encoding two isoforms of subunit CIX of bovine cytochrome c oxidase. J Biol Chem. 1990 Feb 15;265(5):2677–2681. [PubMed] [Google Scholar]
- Lomax M. I., Bachman N. J., Nasoff M. S., Caruthers M. H., Grossman L. I. Isolation and characterization of a cDNA clone for bovine cytochrome c oxidase subunit IV. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6295–6299. doi: 10.1073/pnas.81.20.6295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lomax M. I., Welch M. D., Darras B. T., Francke U., Grossman L. I. Novel use of a chimpanzee pseudogene for chromosomal mapping of human cytochrome c oxidase subunit IV. Gene. 1990 Feb 14;86(2):209–216. doi: 10.1016/0378-1119(90)90281-u. [DOI] [PubMed] [Google Scholar]
- Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
- Osheroff N., Speck S. H., Margoliash E., Veerman E. C., Wilms J., König B. W., Muijsers A. O. The reaction of primate cytochromes c with cytochrome c oxidase. Analysis of the polarographic assay. J Biol Chem. 1983 May 10;258(9):5731–5738. [PubMed] [Google Scholar]
- Ramharack R., Deeley R. G. Structure and evolution of primate cytochrome c oxidase subunit II gene. J Biol Chem. 1987 Oct 15;262(29):14014–14021. [PubMed] [Google Scholar]
- Rizzuto R., Nakase H., Darras B., Francke U., Fabrizi G. M., Mengel T., Walsh F., Kadenbach B., DiMauro S., Schon E. A. A gene specifying subunit VIII of human cytochrome c oxidase is localized to chromosome 11 and is expressed in both muscle and non-muscle tissues. J Biol Chem. 1989 Jun 25;264(18):10595–10600. [PubMed] [Google Scholar]
- Sacher R., Steffens G. J., Buse G. Studies on cytochrome c oxidase, VI. Polypeptide IV. the complete primary structure. Hoppe Seylers Z Physiol Chem. 1979 Oct;360(10):1385–1392. doi: 10.1515/bchm2.1979.360.2.1385. [DOI] [PubMed] [Google Scholar]
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Kuilenburg A. B., Muijsers A. O., Demol H., Dekker H. L., Van Beeumen J. J. Human heart cytochrome c oxidase subunit VIII. Purification and determination of the complete amino acid sequence. FEBS Lett. 1988 Nov 21;240(1-2):127–132. doi: 10.1016/0014-5793(88)80353-3. [DOI] [PubMed] [Google Scholar]
- Wu C. I., Li W. H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. doi: 10.1073/pnas.82.6.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada M., Amuro N., Goto Y., Okazaki T. Structural organization of the rat cytochrome c oxidase subunit IV gene. J Biol Chem. 1990 May 5;265(13):7687–7692. [PubMed] [Google Scholar]
- Yanamura W., Zhang Y. Z., Takamiya S., Capaldi R. A. Tissue-specific differences between heart and liver cytochrome c oxidase. Biochemistry. 1988 Jun 28;27(13):4909–4914. doi: 10.1021/bi00413a048. [DOI] [PubMed] [Google Scholar]
- Zeviani M., Nakagawa M., Herbert J., Lomax M. I., Grossman L. I., Sherbany A. A., Miranda A. F., DiMauro S., Schon E. A. Isolation of a cDNA clone encoding subunit IV of human cytochrome c oxidase. Gene. 1987;55(2-3):205–217. doi: 10.1016/0378-1119(87)90281-2. [DOI] [PubMed] [Google Scholar]