Skip to main content
Journal of Research of the National Institute of Standards and Technology logoLink to Journal of Research of the National Institute of Standards and Technology
. 1991 Sep-Oct;96(5):613–615. doi: 10.6028/jres.096.037

Letter to the Editor: A List of New Group Divisible Designs

Kishore Sinha 1
PMCID: PMC4927237  PMID: 28184135

Abstract

Group divisible designs are the most important class of partially balanced incomplete block (PBIB) designs. A list of new group divisible designs with r, k ⩽ 10 is provided.

Keywords: experimental design, group divisible design, partially balanced designs

1. Introduction

Group divisible designs are the most important class of partially balanced incomplete block (PBIB) designs. Clatworthy, Cameron, and Speckman at the National Bureau of Standards [3] tabulated group divisible designs with r, k ≤10. Since then, a good number of new group divisible designs not listed in reference [3] have been reported by various authors in different journals. Here, a list of new group divisible designs not found in the tables in reference [3] is provided.

2. New Group Divisible Designs

Table 1 gives new group divisible designs with r, k ⩽ 10.

Table 1.

New group divisible designs with r, k ⩽ 10.

No. v r k b m n λ1 λ2 Ea Sourceb
  1 16 9 3 48 8 2 4 1 0.69 BP[1]
  2 18 10 3 60 9 2 4 1 0.69 F[7]
  3 12 7 4 21 6 2 1 2 0.82 F[7]
  4 12 7 4 21 2 6 3 1 0.79 JT[8]
  5 12 8 4 24 4 3 3 2 0.82 JT[8]
  6 12 9 4 27 2 6 3 2 0.82 JT[8]
  7 12 9 4 27 6 2 7 2 0.75 F[7]
  8 12 10 4 30 6 2 0 3 0.81 F[7]
  9 14 10 4 35 7 2 6 2 0.80 F[7]
10 16 6 4 24 8 2 4 1 0.78 BP[1]
11 18 10 4 45 6 3 0 2 0.80 F[7]
12 20 8 4 40 10 2 6 1 0.76 BP[1]
13 22 8 4 44 11 2 2 4 0.77 F[7]
14 24 9 4 54 12 2 5 1 0.77 F[7]
15 26 10 4 65 13 2 6 1 0.76 F[7]
16 14 10 5 28 7 2 4 3 0.86 JT[8]
17 15 8 5 24 3 5 3 2 0.86 JT[8]
18 15 8 5 24 5 3 4 2 0.85 JT[8]
19 15 10 5 30 3 5 5 2 0.84 S[10]
20 22 10 5 44 11 2 0 2 0.84 F[7]
21 12 7 6 14 6 2 5 3 0.91 JT[8]
22 12 9 6 18 6 2 5 4 0.91 F[7]
23 12 9 6 18 3 4 7 3 0.89 BP[2]
24 12 10 6 20 3 4 6 4 0.91 JT[8]
25 16 9 6 24 4 4 7 2 0.86 S[10]
26 12 7 7 12 3 4 6 3 0.92 BP[2]
27 16 7 7 16 4 4 2 3 0.91 JT[8]
28 16 7 7 16 8 2 0 3 0.91 D[4]
29 21 7 7 21 7 3 3 2 0.90 F[7]
30 24 7 7 24 8 3 0 2 0.89 F[7]
31 35 7 7 35 7 5 3 1 0.87 F[7]
32 45 7 7 45 15 3 0 1 0.88 DR[6]
33 42 8 8 42 7 6 4 1 0.88 F[7]
34 16 9 9 16 4 4 4 5 0.95 JT[8]
35 18 10 9 20 3 6 4 5 0.79 JT[8]
36 20 9 9 20 4 5 3 4 0.94 JT[8]
37 20 9 9 20 10 2 0 4 0.93 D[4]
38 24 9 9 24 6 4 4 3 0.93 S[9]
39 38 9 9 38 19 2 0 2 0.91 DR[6]
40 40 9 9 40 10 4 0 2 0.91 DN[5]
41 49 9 9 49 7 7 5 1 0.89 F[7]
42 21 10 10 21 7 3 9 4 0.94 F[7]
43 21 10 10 21 3 7 8 3 0.93 BP[2]
44 24 10 10 24 8 3 3 4 0.94 S[9]
45 28 10 10 28 7 4 6 3 0.93 F[7]
46 56 10 10 56 7 8 6 1 0.89 F[7]
a

E stands for average efficiency factor.

b

The abbreviations BP, D, DN, DR, F, JT, and S stand for Bhangwandas and Parihar, Dey, Dey and Nigam, De and Roy, Freeman, John and Turner, and Sinha, respectively.

Biography

About the author: Dr. Kishore Sinha is an Associate Professor in the Department of Statistics, Birsa Agricultural University, Ranchi, India.

3. References

  • 1.Bhagwandas JS, Parihar JS. Some new group divisible designs. J Statist Plan Inference. 1980;4:321–323. [Google Scholar]
  • 2.Bhagwandas JS, Parihar JS. Some new series of regular group divisible designs. Commun Statist, Th Method. 1982;11:761–768. [Google Scholar]
  • 3.Clatworthy WH, Cameron JM, Speckman JA. Tables of two-associate-class partially balanced designs. Natl Bur Stand (US), Appl Math Ser. 1973;63 [Google Scholar]
  • 4.Dey A. Construction of regular group divisible designs. Biometrika. 1977;64:647–649. [Google Scholar]
  • 5.Dey A, Nigam AK. Construction of group divisible designs. J Indian Soc Agric Statist. 1985;37:163–166. [Google Scholar]
  • 6.Dc AK, Roy BK. Computer construction of some group divisible designs. Sankhya (B) 1990;52:82–92. [Google Scholar]
  • 7.Freeman GH. A cyclic method of constructing regular group divisible incomplete block designs. Biometrika. 1976;63:555–558. [Google Scholar]
  • 8.John JA, Turner G. Some new group divisible designs. J Statist Plan Inference. 1977;1:103–107. [Google Scholar]
  • 9.Sinha K. A method of construction of regular group divisible designs. Biometrika. 1987;74:443–144. [Google Scholar]
  • 10.Sinha K. A method of constructing PBIB designs. J Indian Soc Agric Statist. 1989;41:313–315. [Google Scholar]

Articles from Journal of Research of the National Institute of Standards and Technology are provided here courtesy of National Institute of Standards and Technology

RESOURCES