Abstract
Histological and electromyographic studies indicate that longitudinal muscle fibre splitting is a common finding in neuromuscular disorders. Separated fragments derived by splitting may undergo degeneration or enlarge to become separate, innervated fibres, thus leading to an increased number of fibres within motor units. Splitting may, therefore, lead to the formation of clusters of fibres of uniform histochemical type, but of variable diameter and length, both in neurogenic and in myopathic disorders. Fibre splitting is thus a factor leading to functional compensation in these disorders.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLBROOK D. B., AITKEN J. T. Reinnervation of striated muscle after acute ischaemia. J Anat. 1951 Oct;85(4):376–390. [PMC free article] [PubMed] [Google Scholar]
- Bell C. D., Conen P. E. Histopathological changes in Duchenne muscular dystrophy. J Neurol Sci. 1968 Nov-Dec;7(3):529–544. doi: 10.1016/0022-510x(68)90058-0. [DOI] [PubMed] [Google Scholar]
- Coërs C., Telerman-Toppet N., Gerard J. M. Terminal innervation ratio in neuromuscular disease. II. Disorders of lower motor neuron, peripheral nerve, and muscle. Arch Neurol. 1973 Oct;29(4):215–222. doi: 10.1001/archneur.1973.00490280027003. [DOI] [PubMed] [Google Scholar]
- Desmedt J. E., Borenstein S. Collateral innervation of muscle fibres by motor axons of dystrophic motor units. Nature. 1973 Dec 21;246(5434):500–501. doi: 10.1038/246500a0. [DOI] [PubMed] [Google Scholar]
- Desmedt J. E., Borenstein S. Regeneration in Duchenne muscular dystrophy. Electromyographic evidence. Arch Neurol. 1976 Sep;33(9):642–650. doi: 10.1001/archneur.1976.00500090048010. [DOI] [PubMed] [Google Scholar]
- Desmedt J. E., Borenstein S. Relationship of spontaneous fibrillation potentials to muscle fibre segmentation in human muscular dystrophy. Nature. 1975 Dec 11;258(5535):531–534. doi: 10.1038/258531a0. [DOI] [PubMed] [Google Scholar]
- Drachman D. B., Murphy S. R., Nigam M. P., Hills J. R. "Myopathic" changes in chronically denervated muscle. Arch Neurol. 1967 Jan;16(1):14–24. doi: 10.1001/archneur.1967.00470190018002. [DOI] [PubMed] [Google Scholar]
- Ekstedt J., Stålberg E. Abnormal connections between skeletal muscle fibers. Electroencephalogr Clin Neurophysiol. 1969 Dec;27(6):607–609. doi: 10.1016/0013-4694(69)90074-1. [DOI] [PubMed] [Google Scholar]
- HAASE G. R., SHY G. M. Pathological changes in muscle biopsies from patients with peroneal muscular atrophy. Brain. 1960 Dec;83:631–637. doi: 10.1093/brain/83.4.631. [DOI] [PubMed] [Google Scholar]
- Hall-Craggs E. C., Lawrence C. A. Longitudinal fibre division in skeletal muscle: a light- and electronmicroscopic study. Z Zellforsch Mikrosk Anat. 1970;109(4):481–494. doi: 10.1007/BF00343963. [DOI] [PubMed] [Google Scholar]
- Hall-Craggs E. C. Observations on the fate of muscle fibres temporarily isolated by transection of a muscle belly. Z Zellforsch Mikrosk Anat. 1971;119(1):68–76. doi: 10.1007/BF00330539. [DOI] [PubMed] [Google Scholar]
- Isaacs E. R., Bradley W. G., Henderson G. Longitudinal fibre splitting in muscular dystrophy: a serial cinematographic study. J Neurol Neurosurg Psychiatry. 1973 Oct;36(5):813–819. doi: 10.1136/jnnp.36.5.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James N. T. Compensatory hypertrophy in the extensor digitorum longus muscle of the rat. J Anat. 1973 Oct;116(Pt 1):57–65. [PMC free article] [PubMed] [Google Scholar]
- KATZ B., MILEDI R. THE DEVELOPMENT OF ACETYLCHOLINE SENSITIVITY IN NERVE-FREE SEGMENTS OF SKELETAL MUSCLE. J Physiol. 1964 Mar;170:389–396. doi: 10.1113/jphysiol.1964.sp007339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MILEDI R. Induced innervation of end-plate free muscle segments. Nature. 1962 Jan 20;193:281–282. doi: 10.1038/193281a0. [DOI] [PubMed] [Google Scholar]
- Mechler F. Changing electromyographic findings during the chronic course of polymyositis. J Neurol Sci. 1974 Oct;23(2):237–242. doi: 10.1016/0022-510x(74)90227-5. [DOI] [PubMed] [Google Scholar]
- Reznik M., Engel W. K. Ultrastructural and histochemical correlations of experimental muscle regeneration. J Neurol Sci. 1970 Aug;11(2):167–185. doi: 10.1016/0022-510x(70)90126-7. [DOI] [PubMed] [Google Scholar]
- Ringel S. P., Bender A. N., Engel W. K. Extrajunctional acetylcholine receptors. Alterations in human and experimental neuromuscular diseases. Arch Neurol. 1976 Nov;33(11):751–758. doi: 10.1001/archneur.1976.00500110019004. [DOI] [PubMed] [Google Scholar]
- Schwartz M. S., Moosa A., Dubowitz V. Correlation of single fibre EMG and muscle histochrmistry using an open biopsy recording technique. J Neurol Sci. 1977 Apr;31(3):369–378. doi: 10.1016/0022-510x(77)90215-5. [DOI] [PubMed] [Google Scholar]
- Schwartz M. S., Sargeant M., Swash M. Longitudinal fibre splitting in neurogenic muscular disorders--its relation to the pathogenesis of "myopathic" change. Brain. 1976 Dec;99(4):617–636. doi: 10.1093/brain/99.4.617. [DOI] [PubMed] [Google Scholar]
- Stålberg E., Schwartz M. S., Trontelj J. V. Single fibre electromyography in various processes affecting the anterior horn cell. J Neurol Sci. 1975 Apr;24(4):403–415. doi: 10.1016/0022-510x(75)90166-5. [DOI] [PubMed] [Google Scholar]
- Vracko R. Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol. 1974 Nov;77(2):314–346. [PMC free article] [PubMed] [Google Scholar]