Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1978 Apr;41(4):333–339. doi: 10.1136/jnnp.41.4.333

Influence of dietary myoinositol on nerve conduction and inositol phospholipids in normal and diabetic rats.

J G Jefferys, K P Palmano, A K Sharma, P K Thomas
PMCID: PMC493026  PMID: 650240

Abstract

Observations have been made on motor conduction velocity in the tibial nerve of rats given 35% myoinositol in the diet. Comparison between the values before and with up to nine weeks of dosing revealed no alteration in conduction velocity. In such animals, the free myoinositol content in the sciatic nerve was increased; there was no detectable alteration in the lipid inositol concentration. In a second series of experiments, tibial motor nerve conduction velocity in rats with streptozotocin-induced diabetes was compared with conduction velocity in diabetic animals given 1% supplementary dietary myoinositol, and with a control group of nondiabetic rats. Conduction velocity was reduced in the diabetic animals, but no influence from the added dietary myoinositol was detected. No statistically significantly difference in sciatic nerve myoinositol was demonstrated, but the sorbitol and fructose concentrations were increased. Those animals fed the myoinositol supplement had a significantly lower lipid inositol content. The significance of these findings is discussed.

Full text

PDF
333

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRREN J. E., WALL P. D. Age changes in conduction velocity, refractory period, number of fibers, connective tissue space and blood vessels in sciatic nerve of rats. J Comp Neurol. 1956 Feb;104(1):1–16. doi: 10.1002/cne.901040102. [DOI] [PubMed] [Google Scholar]
  2. Clements R. S., Jr, DeJesus P. V., Jr, Winegrad A. I. Raised plasma-myoinositol levels in uraemia and experimental neuropathy. Lancet. 1973 May 26;1(7813):1137–1141. doi: 10.1016/s0140-6736(73)91143-4. [DOI] [PubMed] [Google Scholar]
  3. DeJesus P. V., Jr, Clements R. S., Jr, Winegrad A. I. Hypermyoinositolemic polyneuropathy in rats. A possible mechanism for uremic polyneuropathy. J Neurol Sci. 1974 Mar;21(3):237–249. doi: 10.1016/0022-510x(74)90170-1. [DOI] [PubMed] [Google Scholar]
  4. ELIASSON S. G. NERVE CONDUCTION CHANGES IN EXPERIMENTAL DIABETES. J Clin Invest. 1964 Dec;43:2353–2358. doi: 10.1172/JCI105109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eichberg J., Hauser G. The subcellular distribution of polyphosphoinositides in myelinated and unmyelinated rat brain. Biochim Biophys Acta. 1973 Nov 29;326(2):210–223. doi: 10.1016/0005-2760(73)90247-6. [DOI] [PubMed] [Google Scholar]
  6. Gabbay K. H., Merola L. O., Field R. A. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science. 1966 Jan 14;151(3707):209–210. doi: 10.1126/science.151.3707.209. [DOI] [PubMed] [Google Scholar]
  7. Greene D. A., De Jesus P. V., Jr, Winegrad A. I. Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest. 1975 Jun;55(6):1326–1336. doi: 10.1172/JCI108052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hendrickson H. S., Reinertsen J. L. Comparison of metal-binding properties of trans-1,2-cyclohexanediol diphosphate and deacylated phosphoinositides. Biochemistry. 1969 Dec;8(12):4855–4858. doi: 10.1021/bi00840a031. [DOI] [PubMed] [Google Scholar]
  9. Hendrickson H. S., Reinertsen J. L. Phosphoinositide interconversion: a model for control of Na + and K + permeability in the nerve axon membrane. Biochem Biophys Res Commun. 1971 Sep;44(5):1258–1264. doi: 10.1016/s0006-291x(71)80221-8. [DOI] [PubMed] [Google Scholar]
  10. Jakobsen J. Axonal dwindling in early experimental diabetes. II. A study of isolated nerve fibres. Diabetologia. 1976 Dec;12(6):547–553. doi: 10.1007/BF01220630. [DOI] [PubMed] [Google Scholar]
  11. Jakobsen J., Lundbaek K. Neuropathy in experimental diabetes: an animal model. Br Med J. 1976 Jul 31;2(6030):278–279. doi: 10.1136/bmj.2.6030.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kai M., Hawthorne J. N. Physiological significance of polyphosphoinositides in brain. Ann N Y Acad Sci. 1969 Oct 17;165(2):761–773. [PubMed] [Google Scholar]
  13. Miyoshi T., Goto I. Serial in vivo determinations of nerve conduction velocity in rat tails. Physiological and pathological changes. Electroencephalogr Clin Neurophysiol. 1973 Aug;35(2):125–131. doi: 10.1016/0013-4694(73)90168-5. [DOI] [PubMed] [Google Scholar]
  14. Palmano K. P., Whiting P. H., Hawthorne J. N. Free and lipid myo-inositol in tissues from rats with acute and less severe streptozotocin-induced diabetes. Biochem J. 1977 Oct 1;167(1):229–235. doi: 10.1042/bj1670229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Powell H., Knox D., Lee S., Charters A. C., Orloff M., Garrett R., Lampert P. Alloxan diabetic neuropathy: electron microscopic studies. Neurology. 1977 Jan;27(1):60–66. doi: 10.1212/wnl.27.1.60. [DOI] [PubMed] [Google Scholar]
  16. Preston G. M. Peripheral neuropathy in the alloxan-diabetic rat. J Physiol. 1967 Apr;189(2):49P–50P. [PMC free article] [PubMed] [Google Scholar]
  17. Reznek R. H., Salway J. G., Thomas P. K. Plasma-myoinositol concentrations in uraemic neuropathy. Lancet. 1977 Mar 26;1(8013):675–676. doi: 10.1016/s0140-6736(77)92116-x. [DOI] [PubMed] [Google Scholar]
  18. Sharma A. K., Thomas P. K., Baker R. W. Peripheral nerve abnormalities related to galactose administration in rats. J Neurol Neurosurg Psychiatry. 1976 Aug;39(8):794–802. doi: 10.1136/jnnp.39.8.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sharma A. K., Thomas P. K., De Molina A. F. Peripheral nerve fiber size in experimental diabetes. Diabetes. 1977 Jul;26(7):689–692. doi: 10.2337/diab.26.7.689. [DOI] [PubMed] [Google Scholar]
  20. Sharma A. K., Thomas P. K. Peripheral nerve structure and function in experimental diabetes. J Neurol Sci. 1974 Sep;23(1):1–15. doi: 10.1016/0022-510x(74)90136-1. [DOI] [PubMed] [Google Scholar]
  21. Sima A. Studies on fibre size in developing sciatic nerve and spinal roots in normal, undernourished, and rehabilitated rats. Acta Physiol Scand Suppl. 1974;406:1–55. [PubMed] [Google Scholar]
  22. Stewart M. A., Sherman W. R., Kurien M. M., Moonsammy G. I., Wisgerhof M. Polyol accumulations in nervous tissue of rats with experimental diabetes and galactosaemia. J Neurochem. 1967 Nov;14(11):1057–1066. doi: 10.1111/j.1471-4159.1967.tb09516.x. [DOI] [PubMed] [Google Scholar]
  23. White G. L., Larrabee M. G. Phosphoinositides and other phospholipids in sympathetic ganglia and nerve trunks of rats. Effects of neuronal activity and inositol analogs ( - and -hexachlorocyclohexane (lindane)) on ( 32 P)-labelling, synaptic transmission and axonal conduction. J Neurochem. 1973 Mar;20(3):783–798. doi: 10.1111/j.1471-4159.1973.tb00039.x. [DOI] [PubMed] [Google Scholar]
  24. Yagihara Y., Salway J. G., Hawthorne J. N. Incorporation of 32P in vitro into triphosphoinositide and related lipids of rat superior cervical ganglia and vagus nerves. J Neurochem. 1969 Jul;16(7):1133–1139. doi: 10.1111/j.1471-4159.1969.tb05958.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES