Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Jun 15;89(12):5467–5471. doi: 10.1073/pnas.89.12.5467

Random PCR mutagenesis screening of secreted proteins by direct expression in mammalian cells.

G C Rice 1, D V Goeddel 1, G Cachianes 1, J Woronicz 1, E Y Chen 1, S R Williams 1, D W Leung 1
PMCID: PMC49313  PMID: 1376921

Abstract

We have developed a general method for screening randomly mutagenized expression libraries in mammalian cells by using fluorescence-activated cell sorting (FACS). The cDNA sequence of a secreted protein is randomly mutagenized by PCR under conditions of reduced Taq polymerase fidelity. The mutated DNA is inserted into an expression vector encoding the membrane glycophospholipid anchor sequence of decay-accelerating factor (DAF) fused to the C terminus of the secreted protein. This results in expression of the protein on the cell surface in transiently transfected mammalian cells, which can then be screened by FACS. This method was used to isolate mutants in the kringle 1 (K1) domain of tissue plasminogen activator (t-PA) that would no longer be recognized by a specific monoclonal antibody (mAb387) that inhibits binding of t-PA to its clearance receptor. DNA sequence analysis of the mutants and localization of the mutated residues on a three-dimensional model of the K1 domain identified three key discontinuous amino acid residues that are essential for mAb387 binding. Mutants with changes in any of these three residues were found to have reduced binding to the t-PA receptor on human hepatoma HepG2 cells but to retain full clot lysis activity.

Full text

PDF
5467

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Botstein D., Shortle D. Strategies and applications of in vitro mutagenesis. Science. 1985 Sep 20;229(4719):1193–1201. doi: 10.1126/science.2994214. [DOI] [PubMed] [Google Scholar]
  2. Burchill S. A., Virden R., Fuller B. B., Thody A. J. Regulation of tyrosinase synthesis by alpha-melanocyte-stimulating hormone in hair follicular melanocytes of the mouse. J Endocrinol. 1988 Jan;116(1):17–23. doi: 10.1677/joe.0.1160017. [DOI] [PubMed] [Google Scholar]
  3. Caras I. W., Weddell G. N., Davitz M. A., Nussenzweig V., Martin D. W., Jr Signal for attachment of a phospholipid membrane anchor in decay accelerating factor. Science. 1987 Nov 27;238(4831):1280–1283. doi: 10.1126/science.2446389. [DOI] [PubMed] [Google Scholar]
  4. Carlson R. H., Garnick R. L., Jones A. J., Meunier A. M. The determination of recombinant human tissue-type plasminogen activator activity by turbidimetry using a microcentrifugal analyzer. Anal Biochem. 1988 Feb 1;168(2):428–435. doi: 10.1016/0003-2697(88)90340-5. [DOI] [PubMed] [Google Scholar]
  5. Chen E. Y., Seeburg P. H. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA. 1985 Apr;4(2):165–170. doi: 10.1089/dna.1985.4.165. [DOI] [PubMed] [Google Scholar]
  6. Collen D., Stassen J. M., Larsen G. Pharmacokinetics and thrombolytic properties of deletion mutants of human tissue-type plasminogen activator in rabbits. Blood. 1988 Jan;71(1):216–219. [PubMed] [Google Scholar]
  7. Fuchs H. E., Berger H., Jr, Pizzo S. V. Catabolism of human tissue plasminogen activator in mice. Blood. 1985 Mar;65(3):539–544. [PubMed] [Google Scholar]
  8. Higgins D. L., Bennett W. F. Tissue plasminogen activator: the biochemistry and pharmacology of variants produced by mutagenesis. Annu Rev Pharmacol Toxicol. 1990;30:91–121. doi: 10.1146/annurev.pa.30.040190.000515. [DOI] [PubMed] [Google Scholar]
  9. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  10. Kalyan N. K., Lee S. G., Wilhelm J., Fu K. P., Hum W. T., Rappaport R., Hartzell R. W., Urbano C., Hung P. P. Structure-function analysis with tissue-type plasminogen activator. Effect of deletion of NH2-terminal domains on its biochemical and biological properties. J Biol Chem. 1988 Mar 15;263(8):3971–3978. [PubMed] [Google Scholar]
  11. Kuiper J., Otter M., Rijken D. C., van Berkel T. J. Characterization of the interaction in vivo of tissue-type plasminogen activator with liver cells. J Biol Chem. 1988 Dec 5;263(34):18220–18224. [PubMed] [Google Scholar]
  12. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  13. Leung D. W., Cachianes G., Kuang W. J., Goeddel D. V., Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989 Dec 8;246(4935):1306–1309. doi: 10.1126/science.2479986. [DOI] [PubMed] [Google Scholar]
  14. Owensby D. A., Morton P. A., Schwartz A. L. Interactions between tissue-type plasminogen activator and extracellular matrix-associated plasminogen activator inhibitor type 1 in the human hepatoma cell line HepG2. J Biol Chem. 1989 Oct 25;264(30):18180–18187. [PubMed] [Google Scholar]
  15. Peterson A., Seed B. Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4. Cell. 1988 Jul 1;54(1):65–72. doi: 10.1016/0092-8674(88)90180-8. [DOI] [PubMed] [Google Scholar]
  16. Peterson A., Seed B. Monoclonal antibody and ligand binding sites of the T cell erythrocyte receptor (CD2). 1987 Oct 29-Nov 4Nature. 329(6142):842–846. doi: 10.1038/329842a0. [DOI] [PubMed] [Google Scholar]
  17. Rice G. C., Pennica D., Borree J. A., Williams S. R. Measurement of transient cDNA expression in mammalian cells using flow cytometric cell analysis and sorting. Cytometry. 1991;12(3):221–233. doi: 10.1002/cyto.990120304. [DOI] [PubMed] [Google Scholar]
  18. Smith M. In vitro mutagenesis. Annu Rev Genet. 1985;19:423–462. doi: 10.1146/annurev.ge.19.120185.002231. [DOI] [PubMed] [Google Scholar]
  19. Tulinsky A., Park C. H., Mao B., Llinás M. Lysine/fibrin binding sites of kringles modeled after the structure of kringle 1 of prothrombin. Proteins. 1988;3(2):85–96. doi: 10.1002/prot.340030203. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES