Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2016 Jul 1;124(7):A118–A122. doi: 10.1289/EHP358

Project TENDR: Targeting Environmental Neuro-Developmental Risks The TENDR Consensus Statement

Deborah Bennett 1,2, David C Bellinger 3,4,5, Linda S Birnbaum 6,7; DABT6,7; A.T.S6,7, Asa Bradman 8,9, Aimin Chen 10,11,12, Deborah A Cory-Slechta 13,14, Stephanie M Engel 15,16, M Daniele Fallin 17,18, Alycia Halladay 19,20, Russ Hauser 21, Irva Hertz-Picciotto 22,23,, Carol F Kwiatkowski 24,25, Bruce P Lanphear 26, Emily Marquez 27,28, Melanie Marty 29,30, Jennifer McPartland 31,32, Craig J Newschaffer 33,34,35, Devon Payne-Sturges 36,37, Heather B Patisaul 38, Frederica P Perera 39,40, Beate Ritz 41,42,43, Jennifer Sass 44,45, Susan L Schantz 46, Thomas F Webster 47, Robin M Whyatt 48, Tracey J Woodruff 49, R Thomas Zoeller 50,51,52, Laura Anderko 53, Carla Campbell 54, Jeanne A Conry 55, Nathaniel DeNicola 56, Robert M Gould 57,58, Deborah Hirtz 59,60, Katie Huffling 61,62, Philip J Landrigan 63, Arthur Lavin 64,65,66, Mark Miller 67, Mark A Mitchell 68,69,70,71, Leslie Rubin 72, Ted Schettler 73,74, Ho Luong Tran 75,76, Annie Acosta 77,78, Charlotte Brody 79, Elise Miller 80, Pamela Miller 81,82, Maureen Swanson 83,84, Nsedu Obot Witherspoon 85; American College of Obstetricians and Gynecologists (ACOG); Child Neurology Society; Endocrine Society; International Neurotoxicology Association; International Society for Children's Health and the Environment; International Society for Environmental Epidemiology; National Council of Asian Pacific Islander Physicians; National Hispanic Medical Association; National Medical Association
PMCID: PMC4937840  PMID: 27479987

Abstract

Summary: Children in America today are at an unacceptably high risk of developing neurodevelopmental disorders that affect the brain and nervous system including autism, attention deficit hyperactivity disorder, intellectual disabilities, and other learning and behavioral disabilities. These are complex disorders with multiple causes—genetic, social, and environmental. The contribution of toxic chemicals to these disorders can be prevented. Approach: Leading scientific and medical experts, along with children’s health advocates, came together in 2015 under the auspices of Project TENDR: Targeting Environmental Neuro-Developmental Risks to issue a call to action to reduce widespread exposures to chemicals that interfere with fetal and children’s brain development. Based on the available scientific evidence, the TENDR authors have identified prime examples of toxic chemicals and pollutants that increase children’s risks for neurodevelopmental disorders. These include chemicals that are used extensively in consumer products and that have become widespread in the environment. Some are chemicals to which children and pregnant women are regularly exposed, and they are detected in the bodies of virtually all Americans in national surveys conducted by the U.S. Centers for Disease Control and Prevention. The vast majority of chemicals in industrial and consumer products undergo almost no testing for developmental neurotoxicity or other health effects. Conclusion: Based on these findings, we assert that the current system in the United States for evaluating scientific evidence and making health-based decisions about environmental chemicals is fundamentally broken. To help reduce the unacceptably high prevalence of neurodevelopmental disorders in our children, we must eliminate or significantly reduce exposures to chemicals that contribute to these conditions. We must adopt a new framework for assessing chemicals that have the potential to disrupt brain development and prevent the use of those that may pose a risk. This consensus statement lays the foundation for developing recommendations to monitor, assess, and reduce exposures to neurotoxic chemicals. These measures are urgently needed if we are to protect healthy brain development so that current and future generations can reach their fullest potential.

A Call to Action

The TENDR Consensus Statement is a call to action to reduce exposures to toxic chemicals that can contribute to the prevalence of neurodevelopmental disabilities in America’s children. The TENDR authors agree that widespread exposures to toxic chemicals in our air, water, food, soil, and consumer products can increase the risks for cognitive, behavioral, or social impairment, as well as specific neurodevelopmental disorders such as autism and attention deficit hyperactivity disorder (ADHD) (Di Renzo et al. 2015; Gore et al. 2015; Lanphear 2015; Council on Environmental Health 2011). This preventable threat results from a failure of our industrial and consumer markets and regulatory systems to protect the developing brain from toxic chemicals. To lower children’s risks for developing neurodevelopmental disorders, policies and actions are urgently needed to eliminate or significantly reduce exposures to these chemicals. Further, if we are to protect children, we must overhaul how government agencies and business assess risks to human health from chemical exposures, how chemicals in commerce are regulated, and how scientific evidence informs decision making by government and the private sector.

Trends in Neurodevelopmental Disorders

We are witnessing an alarming increase in learning and behavioral problems in children. Parents report that 1 in 6 children in the United States, 17% more than a decade ago, have a developmental disability, including learning disabilities, ADHD, autism, and other developmental delays (Boyle et al. 2011). As of 2012, 1 in 10 (> 5.9 million) children in the United States are estimated to have ADHD (Bloom et al. 2013). As of 2014, 1 in 68 children in the United States has an autism spectrum disorder (based on 2010 reporting data) (CDC 2014).

The economic costs associated with neurodevelopmental disorders are staggering. On average, it costs twice as much in the United States to educate a child who has a learning or developmental disability as it costs for a child who does not (Chambers et al. 2004). A recent study in the European Union found that costs associated with lost IQ points and intellectual disability arising from two categories of chemicals—polybrominated diphenyl ether flame retardants (PBDEs) and organophosphate (OP) pesticides—are estimated at 155.44 billion euros ($169.43 billion dollars) annually (Bellanger et al. 2015). A 2009 analysis in the United States found that for every $1 spent to reduce exposures to lead, a potent neurotoxicant, society would benefit by $17–$221 (Gould 2009).

Vulnerability of the Developing Brain to Chemicals

Many toxic chemicals can interfere with healthy brain development, some at extremely low levels of exposure (Adamkiewicz et al. 2011; Bellinger 2008; Committee on Improving Analysis Approaches Used by the U.S. EPA 2009; Zoeller et al. 2012). Research in the neurosciences has identified “critical windows of vulnerability” during embryonic and fetal development, infancy, early childhood and adolescence (Lanphear 2015; Lyall et al. 2014; Rice and Barone 2000). During these windows of development, toxic chemical exposures may cause lasting harm to the brain that interferes with a child’s ability to reach his or her full potential.

The developing fetus is continuously exposed to a mixture of environmental chemicals (Mitro et al. 2015). A 2011 analysis of the U.S. Centers for Disease Control and Prevention’s (CDC) biomonitoring data found that 90% of pregnant women in the United States have detectable levels of 62 chemicals in their bodies, out of 163 chemicals for which the women were screened (Woodruff et al. 2011). Among the chemicals found in the vast majority of pregnant women are PBDEs, polycyclic aromatic hydrocarbons (PAHS), phthalates, perfluorinated compounds, polychlorinated biphenyls (PCBs), perchlorate, lead and mercury (Woodruff et al. 2011). Many of these chemicals can cross the placenta during pregnancy and are routinely detected in cord blood or other fetal tissues (ATSDR 2011; Brent 2010; Chen et al. 2013; Lien et al. 2011).

Prime Examples of Neurodevelopmentally Toxic Chemicals

The following list provides prime examples of toxic chemicals that can contribute to learning, behavioral, or intellectual impairment, as well as specific neurodevelopmental disorders such as ADHD or autism spectrum disorder:

The United States has restricted some of the production, use and environmental releases of these particular chemicals, but those measures have tended to be too little and too late. We face a crisis from both legacy and ongoing exposures to toxic chemicals. For lead, OP pesticides, PBDEs and air pollution, communities of color and socioeconomically stressed communities face disproportionately high exposures and health impacts (Adamkiewicz et al. 2011; Engel et al. 2015; Zota et al. 2010).

Policies to ban lead from gasoline, paints and other products have been successful in lowering blood lead levels in the American population (Jones et al. 2009), yet lead exposure continues to be a preventable cause of intellectual impairment, ADHD and maladaptive behaviors for millions of children (CDC 2015). Scientists agree that there is no safe level of lead exposure for fetal or early childhood development (Lanphear et al. 2005; Schnur and John 2014), and studies have documented the potential for cumulative and synergistic health effects from combined exposure to lead and social stressors (Bellinger et al. 1988; Cory-Slechta et al. 2004). Thus, taking further preventive actions is imperative.

Epidemiological, toxicological, and mechanistic studies have together provided evidence that clearly demonstrates or strongly suggests neurodevelopmental toxicity for lead, mercury, OP pesticides, air pollution, PBDEs, and PCBs. The level and type of available evidence linking exposures to toxic chemicals with neurodevelopmental disorders, including the examples in this statement, vary both within and among chemical classes. In light of this extensive evidence and continued widespread exposure, the risks for learning and developmental disorders can likely be lowered through targeted exposure reduction, starting with these example chemicals.

Majority of Chemicals Untested for Neurodevelopmental Effects

The examples of developmental neurotoxic chemicals that we list here likely represent the tip of the iceberg. Of the tens of thousands of chemicals on the U.S. Environmental Protection Agency (EPA) chemical inventory, nearly 7,700 are manufactured or imported into the United States at ≥ 25,000 pounds per year (U.S. EPA 2012). The U.S. EPA has identified nearly 3,000 chemicals that are produced or imported at > 1 million pounds per year (U.S. EPA 2006).

Only a minority of chemicals has been evaluated for neurotoxic effects in adults. Even fewer have been evaluated for potential effects on brain development in children (Grandjean and Landrigan 2006, 2014). Further, toxicological studies and regulatory evaluation seldom address combined effects of chemical mixtures, despite evidence that all people are exposed to dozens of chemicals at any given time.

Need for a New Approach to Evaluating Evidence

Our failures to protect children from harm underscore the urgent need for a better approach to developing and assessing scientific evidence and using it to make decisions. We as a society should be able to take protective action when scientific evidence indicates a chemical is of concern, and not wait for unequivocal proof that a chemical is causing harm to our children.

Evidence of neurodevelopmental toxicity of any type—epidemiological or toxicological or mechanistic—by itself should constitute a signal sufficient to trigger prioritization and some level of action. Such an approach would enable policy makers and regulators to proactively test and identify chemicals that are emerging concerns for brain development and prevent widespread human exposures.

Some chemicals, like those that disrupt the endocrine system, present a concern because they interfere with the activity of endogenous hormones that are essential for healthy brain development. Endocrine-disrupting chemicals (EDCs) include many pesticides, flame retardants, fuels, and plasticizers. One class of EDCs that is ubiquitous in consumer products are the phthalates. These are an emerging concern for interference with brain development and therefore demand attention (Boas et al. 2012; Ejaredar et al. 2015; Mathieu-Denoncourt et al. 2015; Miodovnik et al. 2014; U.S. Consumer Product Safety Commission 2014).

Regrettable Substitution

Under our current system, when a toxic chemical or category of chemicals is finally removed from the market, chemical manufacturers often substitute similar chemicals that may pose similar concerns or be virtually untested for toxicity. This practice can result in “regrettable substitution” whereby the cycle of exposures and adverse effects starts all over again. The following list provides examples of this cycle:

  • When the federal government banned some uses of OP pesticides, manufacturers responded by expanding the use of neonicotinoid and pyrethroid pesticides. Evidence is emerging that these widely used classes of pesticides pose a threat to the developing brain (Kara et al. 2015; Richardson et al. 2015; Shelton et al. 2014).

  • When the U.S. Government reached a voluntary agreement with flame retardant manufacturers to stop making PBDEs, the manufacturers substituted other halogenated and organophosphate flame retardant chemicals. Many of these replacement flame retardants are similar in structure to other neurotoxic chemicals but have not undergone adequate assessment of their effects on developing brains.

  • When the federal government banned some phthalates in children’s products, the chemical industry responded by replacing the banned chemicals with structurally similar new phthalates. These replacements are now under investigation for disrupting the endocrine system.

Looking Forward

Our system for evaluating scientific evidence and making decisions about environmental chemicals is broken. We cannot continue to gamble with our children’s health. We call for action now to prevent exposures to chemicals and pollutants that can contribute to the prevalence of neurodevelopmental disabilities in America’s children.

We need to overhaul our approach to developing and assessing evidence on chemicals of concern for brain development. Toward this end, we call on regulators to follow scientific guidance for assessing how chemicals affect brain development, such as taking into account the special vulnerabilities of the developing fetus and children, cumulative effects resulting from combined exposures to multiple toxic chemicals and stressors, and the lack of a safety threshold for many of these chemicals (Committee on Improving Analysis Approaches Used by the U.S. EPA 2009). We call on businesses to eliminate neurodevelopmental toxicants from their supply chains and products, and on health professionals to integrate knowledge about environmental toxicants into patient care and public health practice.

Finally, we call on policy makers to take seriously the need to reduce exposures of all children to lead—by accelerating the clean up from our past uses of lead such as in paint and water pipes, by halting the current uses of lead, and by better regulating the industrial processes that cause new lead contamination.

We are confident that reducing exposures to chemicals that can interfere with healthy brain development will help to lower the prevalence of neurodevelopmental disabilities, and thus enable many more children to reach their full potential.

Acknowledgments

The views expressed in this statement are solely those of the authors and signatories.

Footnotes

Project TENDR has been supported by grants from the John Merck Fund, Ceres Trust, Passport Foundation, and the National Institute of Environmental Health Sciences (R13ES026504).

D.B. has served as an expert witness in civil litigation cases and criminal cases involving exposures to environmental chemicals. He has been paid for these activities. He has provided opinions for plaintiffs and for defendants, depending on the facts of the case. He also served as a paid expert witness to a Commission of Inquiry into lead contamination in Hong Kong’s drinking water. A.B. has served as a consultant to nonprofit organizations developing environmental health educational curricula for child care programs and has participated as a volunteer member on the Board of the Organic Center, a nonprofit organization that provides information for scientific research about organic food and farming. C.K. is employed by The Endocrine Disruption Exchange (TEDX), a U.S. 501(c)3 organization that occasionally provides consultation, legal assistance, or expert testimony on the topic of endocrine-disrupting chemicals. Neither C.K. nor TEDX stands to gain or lose financially through the publication of this article. This work was supported by private foundations that did not have scientific or editorial input or control. J.S. is employed by the Natural Resources Defense Council, an environmental non-governmental organization (NGO) that routinely engages in public advocacy, lobbying, and litigation to expand protections for the environment and public health and to enforce existing environmental laws regulating toxic chemicals, including some of the chemicals identified in this manuscript. I.H-P. has received travel reimbursements for her service on the Scientific Advisory Committee of Autism Speaks, in which she provided comments on broad directions for the organization’s research programs. She also received payment for reviewing grant proposals for the Research Screening Committee of the California Air Resources Board, which is a branch of the California state government involved in air quality regulation. E.M. works at Pesticide Action Network, an NGO advocating for a farming system that is not reliant on pesticides. M.S. is the Director of the Healthy Children Project for the Learning Disabilities Association of America. Her position is funded by the John Merck Fund, which also contributed some of the funding for Project TENDR.

The authors certify that all actual or potential competing financial interests have been declared, and the authors’ freedom to design, conduct, interpret, and publish research is not compromised by any controlling sponsor as a condition of review and publication.

References

  1. Abt E, Rodricks JV, Levy JI, Zeise L, Burke TA. Science and decisions: advancing risk assessment. Risk Analysis. 2010;30(7):1028–1036. doi: 10.1111/j.1539-6924.2010.01426.x. [DOI] [PubMed] [Google Scholar]
  2. Adamkiewicz G, Zota AR, Fabian MP, Chahine T, Julien R, Spengler JD, et al. Moving environmental justice indoors: Understanding structural influences on residential exposure patterns in low-income communities. Am J Public Health. 2011;101(suppl 1):S238–S245. doi: 10.2105/AJPH.2011.300119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. ATSDR (Agency for Toxic Substances and Disease Registry) Polycyclic Aromatic Hydrocarbons (PAHs): What Are the Routes of Exposure for PAHs? 2011 Available: http://www.atsdr.cdc.gov/csem/csem.asp?csem=13&po=6 [accessed 7 March 2016]
  4. Becerra TA, Wilhelm M, Olsen J, Cockburn M, Ritz B. Ambient air pollution and autism in Los Angeles County, California. Environ Health Perspect. 2013;121(3):380–386. doi: 10.1289/ehp.1205827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bellanger M, Demeneix B, Grandjean P, Zoeller RT, Trasande L. Neurobehavioral deficits, diseases, and associated costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab. 2015;100(4):1256–1266. doi: 10.1210/jc.2014-4323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bellinger DC. Very low lead exposures and children’s neurodevelopment. Curr Opin Pediatr. 2008;20(2):172–177. doi: 10.1097/MOP.0b013e3282f4f97b. [DOI] [PubMed] [Google Scholar]
  7. Bellinger D, Leviton A, Waternaux C, Needleman H, Rabinowitz M. Low-level lead exposure, social class, and infant development. Neurotoxicol Teratol. 1988;10(6):497–503. doi: 10.1016/0892-0362(88)90084-0. [DOI] [PubMed] [Google Scholar]
  8. Bloom B, Jones LI, Freeman G. 2013. Summary health statistics for U.S. children National Health Interview Survey, 2012 Vital Health Stat 10(258 1 81.Available: http://www.cdc.gov/nchs/data/series/sr_10/sr10_258.pdf [accessed 24 May 2016] [PubMed] [Google Scholar]
  9. Boas M, Feldt-Rasmussen U, Main KM. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol. 2012;355:240–248. doi: 10.1016/j.mce.2011.09.005. [DOI] [PubMed] [Google Scholar]
  10. Boyle CA, Boulet S, Schieve LA, Cohen RA, Blumberg SJ, Yeargin-Allsopp M, et al. Trends in the prevalence of developmental disabilities in U.S. children, 1997–2008. Pediatrics. 2011;127:1034–1042. doi: 10.1542/peds.2010-2989. [DOI] [PubMed] [Google Scholar]
  11. Brent GA. The impact of perchlorate exposure in early pregnancy: Is it safe to drink the water? J Clin Endocrinol Metab. 2010;95:3154–3157. doi: 10.1210/jc.2010-0979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. CDC (Centers for Disease Control and Prevention) Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ. 2014;63(2):1–21. [PubMed] [Google Scholar]
  13. CDC. Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables, February 2015. 2015 Available: http://www.cdc.gov/biomonitoring/pdf/FourthReport_UpdatedTables_Feb2015.pdf [accessed 12 January 2016]
  14. Chambers JG, Parris TB, Harr JJ. Washington, DC: American Institutes for Research; 2004. What Are We Spending on Special Education Services in the United States, 1999-2000? Available: http://www.csef-air.org/publications/seep/national/AdvRpt1.pdf [accessed 25 May 2016] [Google Scholar]
  15. Chen A, Park JS, Linderholm L, Rhee A, Petreas M, DeFranco EA, et al. Hydroxylated polybrominated diphenyl ethers in paired maternal and cord sera. Environ Sci Technol. 2013;47(8):3902–3908. doi: 10.1021/es3046839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chen A, Yolton K, Rauch SA, Webster GM, Hornung R, Sjodin A, et al. 2014. Prenatal polybrominated diphenyl ether exposures and neurodevelopment in U.S. children through 5 years of age: The HOME Study. Environ Health Perspect 122 8 856 862, doi: 10.1289/ehp.1307562 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Clifford A, Lang L, Chen R, Anstey KJ, Seaton A. Exposure to air pollution and cognitive functioning across the life course—a systematic literature review. Environ Res. 2016;147(5):383–398. doi: 10.1016/j.envres.2016.01.018. [DOI] [PubMed] [Google Scholar]
  18. Committee on Improving Risk Analysis Approaches Used by the U.S. EPA, Board on Environmental Studies and Toxicology, Division on Earth and Life Studies, National Research Council. Washington, DC: National Academies Press; 2009. Science and Decisions: Advancing Risk Assessment. [Google Scholar]
  19. Cory-Slechta DA, Virgolini MB, Thiruchelvam M, Weston DD, Bauter MR. Maternal stress modulates the effects of developmental lead exposure. Environ Health Perspect. 2004;112(6):717–730. doi: 10.1289/ehp.6481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Council on Environmental Health of the American Academy of Pediatrics. Chemical-management policy: prioritizing children’s health. Pediatrics. 2011;127(5):983–990. doi: 10.1542/peds.2011-0523. [DOI] [PubMed] [Google Scholar]
  21. Cowell WJ, Lederman SA, Sjödin A, Jones R, Wang S, Perera FP, et al. Prenatal exposure to polybrominated diphenyl ethers and child attention problems at 3–7 years. Neurotoxicol Teratol. 2015;52(Pt B):143–150. doi: 10.1016/j.ntt.2015.08.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Di Renzo GC, Conry JA, Blake J, DeFrancesco MS, DeNicola N, Martin JN, et al. International Federation of Gynecology and Obstetrics opinion on reproductive health impacts of exposure to toxic environmental chemicals. Int J Gynecol Obstet. 2015;131(3):219–225. doi: 10.1016/j.ijgo.2015.09.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ejaredar M, Nyanza EC, Ten Eycke K, Dewey D. Phthalate exposure and childrens neurodevelopment: a systematic review. Environ Res. 2015;142(10):51–60. doi: 10.1016/j.envres.2015.06.014. [DOI] [PubMed] [Google Scholar]
  24. Engel SM, Bradman A, Wolff MS, Rauh VA, Harley KG, Yang JH, et al. 2015. Prenatal organophosphorus pesticide exposure and child neurodevelopment at 24 months: an analysis of four birth cohorts. Environ Health Perspect 124 822 830, doi: 10.1289/ehp.1409474 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Eskenazi B, Chevrier J, Rauch SA, Kogut K, Harley KG, Johnson C, et al. 2013. In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS Study. Environ Health Perspect 121 2 257 262, doi: 10.1289/ehp.1205597 [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Eskenazi B, Marks AR, Bradman A, Harley K, Barr DB, Johnson C, et al. 2007. Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect 115 5 792 798, doi: 10.1289/ehp.9828 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Eubig PA, Aguiar A, Schantz SL. 2010. Lead and PCBs as risk factors for attention deficit/hyperactivity disorder. Environ Health Perspect 118 12 1654 1667, doi: 10.1289/ehp.0901852 [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Fortenberry GZ, Meeker JD, Sánchez BN, Barr DB, Panuwet P, Bellinger D, et al. Urinary 3,5,6-trichloro-2-pyridinol (TCPY) in pregnant women from Mexico City: distribution, temporal variability, and relationship with child attention and hyperactivity. Int J Hyg Environ Health. 2014;217(2–3):405–412. doi: 10.1016/j.ijheh.2013.07.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Furlong MA, Engel SM, Barr DB, Wolff MS. Prenatal exposure to organophosphate pesticides and reciprocal social behavior in childhood. Environ Int. 2014;70(9):125–131. doi: 10.1016/j.envint.2014.05.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gore A, Chappell V, Fenton S, Flaws J, Nadal A, Prins G, et al. Executive summary to EDC-2: The Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):593–602. doi: 10.1210/er.2015-1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Gould E. 2009. Childhood lead poisoning: conservative estimates of the social and economic benefits of lead hazard control. Environ Health Perspect 117 7 1162 1167, doi: 10.1289/ehp.0800408 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006;368(9553):2167–2178. doi: 10.1016/S0140-6736(06)69665-7. [DOI] [PubMed] [Google Scholar]
  33. Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13(3):330–338. doi: 10.1016/S1474-4422(13)70278-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Grandjean PW, Weihe P, White RF, Debes F, Araki S, Yokoyama K, et al. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol. 1997;19(6):417–428. doi: 10.1016/s0892-0362(97)00097-4. [DOI] [PubMed] [Google Scholar]
  35. Herbstman JB, Sjodin A, Kurzon M, Lederman SA, Jones RS, Rauh V, et al. 2010. Prenatal exposure to PBDEs and neurodevelopment. Environ Health Perspect 118 5 712 719, doi: 10.1289/ehp.0901340 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Jacobson JL, Jacobson SW. Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N Engl J Med. 1996;335(11):783–789. doi: 10.1056/NEJM199609123351104. [DOI] [PubMed] [Google Scholar]
  37. Jedrychowski WA, Perera FP, Camann D, Spengler J, Butscher M, Mroz E, et al. Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children. Environ Sci Pollut Res Int. 2015;22(5):3631–3639. doi: 10.1007/s11356-014-3627-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Jones RL, Homa DM, Meyer PA, Brody DJ, Caldwell KL, Pirkle JL, et al. Trends in blood lead levels and blood lead testing among U.S. children aged 1 to 5 years, 1988–2004. Pediatrics. 2009;123(3):e376–e385. doi: 10.1542/peds.2007-3608. [DOI] [PubMed] [Google Scholar]
  39. Kalkbrenner AE, Schmidt RJ, Penlesky AC. Environmental chemical exposures and autism spectrum disorders: a review of the epidemiological evidence. Curr Probl Pediatr Adolesc Health Care. 2014;44(10):277–318. doi: 10.1016/j.cppeds.2014.06.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kara M, Yumrutas O, Demir CF, Ozdemir HH, Bozgeyik I, Coskun S, et al. Insecticide imidacloprid influences cognitive functions and alters learning performance and related gene expression in a rat model. Int J Exp Pathol. 2015;96(5):332–337. doi: 10.1111/iep.12139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Karagas MR, Choi AL, Oken E, Horvat M, Schoeny R, Kamai E, et al. 2012. Evidence on the human health effects of low-level methylmercury exposure. Environ Health Perspect 120 6 799 806, doi: 10.1289/ehp.1104494 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Lanphear BP. The impact of toxins on the developing brain. Annu Rev Public Health. 2015;36:211–230. doi: 10.1146/annurev-publhealth-031912-114413. [DOI] [PubMed] [Google Scholar]
  43. Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC, et al. Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect. 2005;113(7):894–899. doi: 10.1289/ehp.7688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Lien GW, Wen TW, Hsieh WS, Wu KY, Chen CY, Chen PC. Analysis of perfluorinated chemicals in umbilical cord blood by ultra-high performance liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(9–10):641–646. doi: 10.1016/j.jchromb.2011.01.037. [DOI] [PubMed] [Google Scholar]
  45. Lyall K, Schmidt RJ, Hertz-Picciotto I. Maternal lifestyle and environmental risk factors for autism spectrum disorders. Int J Epidemiol. 2014;43(2):443–464. doi: 10.1093/ije/dyt282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Marks AR, Harley K, Bradman A, Kogut K, Barr DB, Johnson C, et al. Organophosphate pesticide exposure and attention in young Mexican-American children: the CHAMACOS Study. Environ Health Perspect. 2010;118(12):1768–1774. doi: 10.1289/ehp.1002056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Mathieu-Denoncourt J, Wallace SJ, de Solla SR, Langlois VS. Plasticizer endocrine disruption: highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen Comp Endocrinol. 2015;219:74–88. doi: 10.1016/j.ygcen.2014.11.003. [DOI] [PubMed] [Google Scholar]
  48. Miodovnik A, Edwards A, Bellinger DC, Hauser R. 2014. Developmental neurotoxicity of ortho-phthalate diesters: review of human and experimental evidence. Neurotoxicology 41 112 122, doi: 10.1016/j.neuro.2014.01.007 [DOI] [PubMed] [Google Scholar]
  49. Mitro SD, Johnson T, Zota AR. Cumulative chemical exposures during pregnancy and early development. Curr Environ Health Rep. 2015;2(4):367–378. doi: 10.1007/s40572-015-0064-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Needleman HL, Gunnoe C, Leviton A, Reed R, Peresie H, Maher C, et al. Deficits in psychologic and classroom performance of children with elevated dentine lead levels. N Engl J Med. 1979;300(13):689–695. doi: 10.1056/NEJM197903293001301. [DOI] [PubMed] [Google Scholar]
  51. Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, Barr DB, et al. Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics. 2006;118(6):e1845–e1859. doi: 10.1542/peds.2006-0338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rice D, Barone S., Jr Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108(suppl 3):511–533. doi: 10.1289/ehp.00108s3511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Richardson JR, Taylor MM, Shalat SL, Guillot TS, III, Caudle WM, Hossain MM, et al. Developmental pesticide exposure reproduces features of attention deficit hyperactivity disorder. FASEB J. 2015;29(5):1960–1972. doi: 10.1096/fj.14-260901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sagiv SK, Thurston SW, Bellinger DC, Amarasiriwardena C, Korrick SA. Prenatal exposure to mercury and fish consumption during pregnancy and attention-deficit/hyperactivity disorder-related behavior in children. Arch Pediatr Adolesc Med. 2012;166(12):1123–1131. doi: 10.1001/archpediatrics.2012.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Schantz SL, Widholm JJ, Rice DC. Effects of PCB exposure on neuropsychological function in children. Environ Health Perspect. 2003;111(3):357–576. doi: 10.1289/ehp.5461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Schnur J, John RM. Childhood lead poisoning and the new Centers for Disease Control and Prevention guidelines for lead exposure. J Am Ass Nurse Pract. 2014;26(5):238–247. doi: 10.1002/2327-6924.12112. [DOI] [PubMed] [Google Scholar]
  57. Shelton JF, Geraghty EM, Tancredi DJ, Delwiche LD, Schmidt RJ, Ritz B, et al. Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: the CHARGE Study. Environ Health Perspect. 2014;122(10):1103–1109. doi: 10.1289/ehp.1307044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Suades-González E, Gascon M, Guxens M, Sunyer J. Air pollution and neuropsychological development: a review of the latest evidence. Endocrinology. 2015;156(10):3473–3482. doi: 10.1210/en.2015-1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. U.S. Consumer Product Safety Commission. Report to the U.S. Consumer Product Safety Commission by the Chronic Hazard Advisory Panel on Phthalates and Phthalate Alternatives. 2014 Available: https://www.cpsc.gov/PageFiles/169876/CHAP-REPORT-FINAL.pdf [accessed 24 May 2016]
  60. U.S. EPA (U.S. Environmental Protection Agency) 2006 Inventory Update Reporting: Data Summary. 2006 Available: http://www.epa.gov/sites/production/files/documents/2006_data_summary.pdf [accessed 24 May 2016]
  61. U.S. EPA. 2012 Chemical Data Reporting Results. 2012 Available: http://www.epa.gov/chemical-data-reporting/2012-chemical-data-reporting-results [accessed 24 May 2016]
  62. Volk HE, Lurmann F, Penfold B, Hertz-Picciotto I, McConnell R. Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry. 2013;70(1):71–77. doi: 10.1001/jamapsychiatry.2013.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environ Health Perspect. 2011;119(6):878–885. doi: 10.1289/ehp.1002727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Zoeller RT, Brown T, Doan L, Gore A, Skakkebaek N, Soto A, et al. Endocrine-disrupting chemicals and public health protection: A statement of principles from the endocrine society. Endocrinology. 2012;153(9):4097–4110. doi: 10.1210/en.2012-1422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Zota AR, Adamkiewicz G, Morello-Frosch RA. Are PBDEs an environmental equity concern? Exposure disparities by socioeconomic status. Environ Sci Technol. 2010;44(15):5691–5692. doi: 10.1021/es101723d. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES