Abstract
We have used a two-step clonal culture system to unequivocally demonstrate that individual primitive lymphohemopoietic progenitor cells have the capacity for differentiation along either the myeloid or the B-lymphoid lineage. Highly enriched murine marrow cells were plated individually in culture by micromanipulation in the presence of pokeweed mitogen-stimulated spleen cell conditioned medium, erythropoietin, steel factor (SF), and interleukin (IL) 7. Forty-five percent of the single cells formed primary colonies expressing multiple hemopoietic lineages. When aliquots from individual colonies were replated in secondary methyl cellulose culture containing SF and IL-7, 41% of the primary colonies gave rise to lymphocyte colonies. Cells of the lymphocyte colonies were blast-like and B220+, sIg-, Mac-1-, Gr-1-, Ly-1-, L3T4-, Ly-2-, and CD3-. Thirty to 70% of the cells were Thy-1+. mu-chain mRNA was detected in most of the cells by in situ hybridization with an antisense RNA probe. When lymphocyte colonies derived from a single cell were pooled and individually injected into scid mice, donor-type IgM was measurable in the serum of mice and spleens contained donor-type B cells. We then carried out initial screening of growth factors to identify growth factors that might replace pokeweed mitogen-stimulated spleen cell conditioned medium in the primary culture. Combinations of two factors that included SF plus IL-6, IL-11, or granulocyte colony-stimulating factor were all effective in the primary culture in the maintenance of the B-lymphoid potential. Interestingly, IL-3 could neither replace nor act synergistically with SF to support the lymphoid potential of the primary cultures. Our observations demonstrate that many primitive progenitors previously believed to be myeloid-committed also possess B-lymphoid potential. This culture system should prove valuable for elucidation of the mechanisms regulating early stages of lymphohemopoiesis.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Clarke C., Berenson J., Goverman J., Boyer P. D., Crews S., Siu G., Calame K. An immunoglobulin promoter region is unaltered by DNA rearrangement and somatic mutation during B-cell development. Nucleic Acids Res. 1982 Dec 11;10(23):7731–7749. doi: 10.1093/nar/10.23.7731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fauser A. A., Neumann H. A., Bross K. G., Kanz L., Löhr G. W. Cytotoxic T-cell clones derived from pluripotent stem cells (CFU-GEMM) of patients with Hodgkin's lymphoma. Blood. 1982 Dec;60(6):1317–1320. [PubMed] [Google Scholar]
- Goldberg G. I., Vanin E. F., Zrolka A. M., Blattner F. R. Sequence of the gene for the constant region of the mu chain of Balb/c mouse immunoglobulin. Gene. 1981 Oct;15(1):33–42. doi: 10.1016/0378-1119(81)90102-5. [DOI] [PubMed] [Google Scholar]
- Ikebuchi K., Clark S. C., Ihle J. N., Souza L. M., Ogawa M. Granulocyte colony-stimulating factor enhances interleukin 3-dependent proliferation of multipotential hemopoietic progenitors. Proc Natl Acad Sci U S A. 1988 May;85(10):3445–3449. doi: 10.1073/pnas.85.10.3445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikebuchi K., Wong G. G., Clark S. C., Ihle J. N., Hirai Y., Ogawa M. Interleukin 6 enhancement of interleukin 3-dependent proliferation of multipotential hemopoietic progenitors. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9035–9039. doi: 10.1073/pnas.84.24.9035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kishi K., Ihle J. N., Urdal D. L., Ogawa M. Murine B-cell stimulatory factor-1 (BSF-1)/interleukin-4 (IL-4) is a multilineage colony-stimulating factor that acts directly on primitive hemopoietic progenitors. J Cell Physiol. 1989 Jun;139(3):463–468. doi: 10.1002/jcp.1041390303. [DOI] [PubMed] [Google Scholar]
- Lee G., Namen A. E., Gillis S., Ellingsworth L. R., Kincade P. W. Normal B cell precursors responsive to recombinant murine IL-7 and inhibition of IL-7 activity by transforming growth factor-beta. J Immunol. 1989 Jun 1;142(11):3875–3883. [PubMed] [Google Scholar]
- McNiece I. K., Langley K. E., Zsebo K. M. The role of recombinant stem cell factor in early B cell development. Synergistic interaction with IL-7. J Immunol. 1991 Jun 1;146(11):3785–3790. [PubMed] [Google Scholar]
- Messner H. A., Izaquirre C. A., Jamal N. Identification of T lymphocytes in human mixed hemopoietic colonies. Blood. 1981 Aug;58(2):402–405. [PubMed] [Google Scholar]
- Minato N., Hattori M., Sudo T., Kano S., Miura Y., Suda J., Suda T. Differentiation in vitro of T3+ large granular lymphocytes with characteristic cytotoxic activity from an isolated hematopoietic progenitor colony. J Exp Med. 1988 Mar 1;167(3):762–776. doi: 10.1084/jem.167.3.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Musashi M., Clark S. C., Sudo T., Urdal D. L., Ogawa M. Synergistic interactions between interleukin-11 and interleukin-4 in support of proliferation of primitive hematopoietic progenitors of mice. Blood. 1991 Sep 15;78(6):1448–1451. [PubMed] [Google Scholar]
- Musashi M., Yang Y. C., Paul S. R., Clark S. C., Sudo T., Ogawa M. Direct and synergistic effects of interleukin 11 on murine hemopoiesis in culture. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):765–769. doi: 10.1073/pnas.88.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakahata T., Ogawa M. Identification in culture of a class of hemopoietic colony-forming units with extensive capability to self-renew and generate multipotential hemopoietic colonies. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3843–3847. doi: 10.1073/pnas.79.12.3843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shih J. P., Zeng H. Q., Ogawa M. Enrichment of murine marrow cells for progenitors of multilineage hemopoietic colonies. Leukemia. 1992 Mar;6(3):193–198. [PubMed] [Google Scholar]
- Suda T., Okada S., Suda J., Miura Y., Ito M., Sudo T., Hayashi S., Nishikawa S., Nakauchi H. A stimulatory effect of recombinant murine interleukin-7 (IL-7) on B-cell colony formation and an inhibitory effect of IL-1 alpha. Blood. 1989 Nov 1;74(6):1936–1941. [PubMed] [Google Scholar]
- Suda T., Suda J., Ogawa M., Ihle J. N. Permissive role of interleukin 3 (IL-3) in proliferation and differentiation of multipotential hemopoietic progenitors in culture. J Cell Physiol. 1985 Aug;124(2):182–190. doi: 10.1002/jcp.1041240203. [DOI] [PubMed] [Google Scholar]
- Suda T., Suda J., Ogawa M. Single-cell origin of mouse hemopoietic colonies expressing multiple lineages in variable combinations. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6689–6693. doi: 10.1073/pnas.80.21.6689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tidmarsh G. F., Heimfeld S., Whitlock C. A., Weissman I. L., Müller-Sieburg C. E. Identification of a novel bone marrow-derived B-cell progenitor population that coexpresses B220 and Thy-1 and is highly enriched for Abelson leukemia virus targets. Mol Cell Biol. 1989 Jun;9(6):2665–2671. doi: 10.1128/mcb.9.6.2665. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- Tsuji K., Zsebo K. M., Ogawa M. Enhancement of murine blast cell colony formation in culture by recombinant rat stem cell factor, ligand for c-kit. Blood. 1991 Sep 1;78(5):1223–1229. [PubMed] [Google Scholar]
- van der Maazen R., de Witte T., Preijers F., Janssen J., Blankenborg G., Wessels H. Origin of T-lymphocytes in human mixed hematopoietic colonies. Exp Hematol. 1987 Nov;15(10):1080–1085. [PubMed] [Google Scholar]