Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Jul 1;89(13):6114–6118. doi: 10.1073/pnas.89.13.6114

Structures of apo and complexed Escherichia coli glycinamide ribonucleotide transformylase.

R J Almassy 1, C A Janson 1, C C Kan 1, Z Hostomska 1
PMCID: PMC49448  PMID: 1631098

Abstract

The three-dimensional structure of phosphoribosylglycinamide formyltransferase (10-formyltetrahydrofolate:5'-phosphoribosylglycinamide formyltransferase, EC 2.1.2.2) has been solved both as an apoenzyme at 2.8-A resolution and as a ternary complex with the substrate glycinamide ribonucleotide and a folate inhibitor at 2.5-A resolution. The structure is a modified doubly wound alpha/beta sheet with flexibility in the active site, including a disordered loop in the apo structure, which is ordered in the ternary complex structure. This enzyme is a target for anti-cancer therapy and now for structure-based drug design.

Full text

PDF
6114

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aimi J., Qiu H., Williams J., Zalkin H., Dixon J. E. De novo purine nucleotide biosynthesis: cloning of human and avian cDNAs encoding the trifunctional glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetase-glycinamide ribonucleotide transformylase by functional complementation in E. coli. Nucleic Acids Res. 1990 Nov 25;18(22):6665–6672. doi: 10.1093/nar/18.22.6665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldwin S. W., Tse A., Gossett L. S., Taylor E. C., Rosowsky A., Shih C., Moran R. G. Structural features of 5,10-dideaza-5,6,7,8-tetrahydrofolate that determine inhibition of mammalian glycinamide ribonucleotide formyltransferase. Biochemistry. 1991 Feb 19;30(7):1997–2006. doi: 10.1021/bi00221a037. [DOI] [PubMed] [Google Scholar]
  3. Barlow D. J., Thornton J. M. Helix geometry in proteins. J Mol Biol. 1988 Jun 5;201(3):601–619. doi: 10.1016/0022-2836(88)90641-9. [DOI] [PubMed] [Google Scholar]
  4. Beardsley G. P., Moroson B. A., Taylor E. C., Moran R. G. A new folate antimetabolite, 5,10-dideaza-5,6,7,8-tetrahydrofolate is a potent inhibitor of de novo purine synthesis. J Biol Chem. 1989 Jan 5;264(1):328–333. [PubMed] [Google Scholar]
  5. Caperelli C. A. Mammalian glycinamide ribonucleotide transformylase. Kinetic mechanism and associated de novo purine biosynthetic activities. J Biol Chem. 1989 Mar 25;264(9):5053–5057. [PubMed] [Google Scholar]
  6. Flensburg J., Sköld O. Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. Eur J Biochem. 1987 Feb 2;162(3):473–476. doi: 10.1111/j.1432-1033.1987.tb10664.x. [DOI] [PubMed] [Google Scholar]
  7. Hendrickson W. A. Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 1985;115:252–270. doi: 10.1016/0076-6879(85)15021-4. [DOI] [PubMed] [Google Scholar]
  8. Hostomsky Z., Appelt K., Ogden R. C. High-level expression of self-processed HIV-1 protease in Escherichia coli using a synthetic gene. Biochem Biophys Res Commun. 1989 Jun 30;161(3):1056–1063. doi: 10.1016/0006-291x(89)91350-8. [DOI] [PubMed] [Google Scholar]
  9. Inglese J., Johnson D. L., Shiau A., Smith J. M., Benkovic S. J. Subcloning, characterization, and affinity labeling of Escherichia coli glycinamide ribonucleotide transformylase. Biochemistry. 1990 Feb 13;29(6):1436–1443. doi: 10.1021/bi00458a014. [DOI] [PubMed] [Google Scholar]
  10. Inglese J., Smith J. M., Benkovic S. J. Active-site mapping and site-specific mutagenesis of glycinamide ribonucleotide transformylase from Escherichia coli. Biochemistry. 1990 Jul 17;29(28):6678–6687. doi: 10.1021/bi00480a018. [DOI] [PubMed] [Google Scholar]
  11. Moran R. G., Baldwin S. W., Taylor E. C., Shih C. The 6S- and 6R-diastereomers of 5, 10-dideaza-5, 6, 7, 8-tetrahydrofolate are equiactive inhibitors of de novo purine synthesis. J Biol Chem. 1989 Dec 15;264(35):21047–21051. [PubMed] [Google Scholar]
  12. Poe M., Benkovic S. J. 5-Formyl- and 10-formyl-5,6,7,8-tetrahydrofolate. Conformation of the tetrahydropyrazine ring and formyl group in solution. Biochemistry. 1980 Sep 30;19(20):4576–4582. doi: 10.1021/bi00561a006. [DOI] [PubMed] [Google Scholar]
  13. Rao S. T., Rossmann M. G. Comparison of super-secondary structures in proteins. J Mol Biol. 1973 May 15;76(2):241–256. doi: 10.1016/0022-2836(73)90388-4. [DOI] [PubMed] [Google Scholar]
  14. Richardson J. S. Handedness of crossover connections in beta sheets. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2619–2623. doi: 10.1073/pnas.73.8.2619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  16. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  17. Smith G. K., Mueller W. T., Slieker L. J., DeBrosse C. W., Benkovic S. J. Direct transfer of one-carbon units in the transformylations of de novo purine biosynthesis. Biochemistry. 1982 Jun 8;21(12):2870–2874. doi: 10.1021/bi00541a010. [DOI] [PubMed] [Google Scholar]
  18. Smith J. M., Daum H. A., 3rd Identification and nucleotide sequence of a gene encoding 5'-phosphoribosylglycinamide transformylase in Escherichia coli K12. J Biol Chem. 1987 Aug 5;262(22):10565–10569. [PubMed] [Google Scholar]
  19. Stura E. A., Johnson D. L., Inglese J., Smith J. M., Benkovic S. J., Wilson I. A. Preliminary crystallographic investigations of glycinamide ribonucleotide transformylase. J Biol Chem. 1989 Jun 5;264(16):9703–9706. [PubMed] [Google Scholar]
  20. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Takeuchi Y., Satow Y., Nakamura K. T., Mitsui Y. Refined crystal structure of the complex of subtilisin BPN' and Streptomyces subtilisin inhibitor at 1.8 A resolution. J Mol Biol. 1991 Sep 5;221(1):309–325. [PubMed] [Google Scholar]
  22. Taylor E. C., Harrington P. J., Fletcher S. R., Beardsley G. P., Moran R. G. Synthesis of the antileukemic agents 5,10-dideazaaminopterin and 5,10-dideaza-5,6,7,8-tetrahydroaminopterin. J Med Chem. 1985 Jul;28(7):914–921. doi: 10.1021/jm00145a012. [DOI] [PubMed] [Google Scholar]
  23. Wang B. C. Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol. 1985;115:90–112. doi: 10.1016/0076-6879(85)15009-3. [DOI] [PubMed] [Google Scholar]
  24. Yeates T. O., Rini J. M. Intensity-based domain refinement of oriented but unpositioned molecular replacement models. Acta Crystallogr A. 1990 May 1;46(Pt 5):352–359. doi: 10.1107/s0108767389013073. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES