Abstract
The three-dimensional structure of phosphoribosylglycinamide formyltransferase (10-formyltetrahydrofolate:5'-phosphoribosylglycinamide formyltransferase, EC 2.1.2.2) has been solved both as an apoenzyme at 2.8-A resolution and as a ternary complex with the substrate glycinamide ribonucleotide and a folate inhibitor at 2.5-A resolution. The structure is a modified doubly wound alpha/beta sheet with flexibility in the active site, including a disordered loop in the apo structure, which is ordered in the ternary complex structure. This enzyme is a target for anti-cancer therapy and now for structure-based drug design.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aimi J., Qiu H., Williams J., Zalkin H., Dixon J. E. De novo purine nucleotide biosynthesis: cloning of human and avian cDNAs encoding the trifunctional glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetase-glycinamide ribonucleotide transformylase by functional complementation in E. coli. Nucleic Acids Res. 1990 Nov 25;18(22):6665–6672. doi: 10.1093/nar/18.22.6665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldwin S. W., Tse A., Gossett L. S., Taylor E. C., Rosowsky A., Shih C., Moran R. G. Structural features of 5,10-dideaza-5,6,7,8-tetrahydrofolate that determine inhibition of mammalian glycinamide ribonucleotide formyltransferase. Biochemistry. 1991 Feb 19;30(7):1997–2006. doi: 10.1021/bi00221a037. [DOI] [PubMed] [Google Scholar]
- Barlow D. J., Thornton J. M. Helix geometry in proteins. J Mol Biol. 1988 Jun 5;201(3):601–619. doi: 10.1016/0022-2836(88)90641-9. [DOI] [PubMed] [Google Scholar]
- Beardsley G. P., Moroson B. A., Taylor E. C., Moran R. G. A new folate antimetabolite, 5,10-dideaza-5,6,7,8-tetrahydrofolate is a potent inhibitor of de novo purine synthesis. J Biol Chem. 1989 Jan 5;264(1):328–333. [PubMed] [Google Scholar]
- Caperelli C. A. Mammalian glycinamide ribonucleotide transformylase. Kinetic mechanism and associated de novo purine biosynthetic activities. J Biol Chem. 1989 Mar 25;264(9):5053–5057. [PubMed] [Google Scholar]
- Flensburg J., Sköld O. Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. Eur J Biochem. 1987 Feb 2;162(3):473–476. doi: 10.1111/j.1432-1033.1987.tb10664.x. [DOI] [PubMed] [Google Scholar]
- Hendrickson W. A. Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 1985;115:252–270. doi: 10.1016/0076-6879(85)15021-4. [DOI] [PubMed] [Google Scholar]
- Hostomsky Z., Appelt K., Ogden R. C. High-level expression of self-processed HIV-1 protease in Escherichia coli using a synthetic gene. Biochem Biophys Res Commun. 1989 Jun 30;161(3):1056–1063. doi: 10.1016/0006-291x(89)91350-8. [DOI] [PubMed] [Google Scholar]
- Inglese J., Johnson D. L., Shiau A., Smith J. M., Benkovic S. J. Subcloning, characterization, and affinity labeling of Escherichia coli glycinamide ribonucleotide transformylase. Biochemistry. 1990 Feb 13;29(6):1436–1443. doi: 10.1021/bi00458a014. [DOI] [PubMed] [Google Scholar]
- Inglese J., Smith J. M., Benkovic S. J. Active-site mapping and site-specific mutagenesis of glycinamide ribonucleotide transformylase from Escherichia coli. Biochemistry. 1990 Jul 17;29(28):6678–6687. doi: 10.1021/bi00480a018. [DOI] [PubMed] [Google Scholar]
- Moran R. G., Baldwin S. W., Taylor E. C., Shih C. The 6S- and 6R-diastereomers of 5, 10-dideaza-5, 6, 7, 8-tetrahydrofolate are equiactive inhibitors of de novo purine synthesis. J Biol Chem. 1989 Dec 15;264(35):21047–21051. [PubMed] [Google Scholar]
- Poe M., Benkovic S. J. 5-Formyl- and 10-formyl-5,6,7,8-tetrahydrofolate. Conformation of the tetrahydropyrazine ring and formyl group in solution. Biochemistry. 1980 Sep 30;19(20):4576–4582. doi: 10.1021/bi00561a006. [DOI] [PubMed] [Google Scholar]
- Rao S. T., Rossmann M. G. Comparison of super-secondary structures in proteins. J Mol Biol. 1973 May 15;76(2):241–256. doi: 10.1016/0022-2836(73)90388-4. [DOI] [PubMed] [Google Scholar]
- Richardson J. S. Handedness of crossover connections in beta sheets. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2619–2623. doi: 10.1073/pnas.73.8.2619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
- Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
- Smith G. K., Mueller W. T., Slieker L. J., DeBrosse C. W., Benkovic S. J. Direct transfer of one-carbon units in the transformylations of de novo purine biosynthesis. Biochemistry. 1982 Jun 8;21(12):2870–2874. doi: 10.1021/bi00541a010. [DOI] [PubMed] [Google Scholar]
- Smith J. M., Daum H. A., 3rd Identification and nucleotide sequence of a gene encoding 5'-phosphoribosylglycinamide transformylase in Escherichia coli K12. J Biol Chem. 1987 Aug 5;262(22):10565–10569. [PubMed] [Google Scholar]
- Stura E. A., Johnson D. L., Inglese J., Smith J. M., Benkovic S. J., Wilson I. A. Preliminary crystallographic investigations of glycinamide ribonucleotide transformylase. J Biol Chem. 1989 Jun 5;264(16):9703–9706. [PubMed] [Google Scholar]
- Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeuchi Y., Satow Y., Nakamura K. T., Mitsui Y. Refined crystal structure of the complex of subtilisin BPN' and Streptomyces subtilisin inhibitor at 1.8 A resolution. J Mol Biol. 1991 Sep 5;221(1):309–325. [PubMed] [Google Scholar]
- Taylor E. C., Harrington P. J., Fletcher S. R., Beardsley G. P., Moran R. G. Synthesis of the antileukemic agents 5,10-dideazaaminopterin and 5,10-dideaza-5,6,7,8-tetrahydroaminopterin. J Med Chem. 1985 Jul;28(7):914–921. doi: 10.1021/jm00145a012. [DOI] [PubMed] [Google Scholar]
- Wang B. C. Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol. 1985;115:90–112. doi: 10.1016/0076-6879(85)15009-3. [DOI] [PubMed] [Google Scholar]
- Yeates T. O., Rini J. M. Intensity-based domain refinement of oriented but unpositioned molecular replacement models. Acta Crystallogr A. 1990 May 1;46(Pt 5):352–359. doi: 10.1107/s0108767389013073. [DOI] [PubMed] [Google Scholar]