Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1974 Feb;37(2):152–161. doi: 10.1136/jnnp.37.2.152

Impulse conduction in multiple sclerosis: a theoretical basis for modification by temperature and pharmacological agents

C L Schauf 1,2,3, Floyd A Davis 1,2,3
PMCID: PMC494594  PMID: 4362242

Abstract

The simplest model for explaining conduction defects in multiple sclerosis (MS) and other demyelinating diseases assumes that the only abnormality present is loss of myelin. The consequences of such an assumption have been investigated by numerical solution of a well-known set of differential equations describing conduction in a model demyelinated axon. In agreement with clinical findings, we show that this model predicts that the temperature at which conduction block occurs is a steep function of the extent of demyelination, so that small temperature increases may block large numbers of conducting fibres. Decreasing calcium concentration (or increasing pH) is calculated markedly to improve the conduction velocity of conducting demyelinated fibres and will, in addition, restore conduction in blocked fibres. The effects of other pharmacological agents have also been computed. The presence of a demyelinating lesion in a nerve fibre is shown greatly to impair the ability of the fibre to conduct repetitive impulses, conduction failing at much lower frequencies than in normal fibres. These calculations provide some insight into the nature of conduction defects in demyelinated nerve, demonstrate that many clinical features of MS are the expected consequence of loss of myelin and do not require the presence of other defects for their explanation, and provide a useful approach to the search for a symptomatic therapy.

Full text

PDF
152

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cooley J. W., Dodge F. A., Jr Digital computer solutions for excitation and propagation of the nerve impulse. Biophys J. 1966 Sep;6(5):583–599. doi: 10.1016/S0006-3495(66)86679-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DODGE F. A., FRANKENHAEUSER B. Membrane currents in isolated frog nerve fibre under voltage clamp conditions. J Physiol. 1958 Aug 29;143(1):76–90. doi: 10.1113/jphysiol.1958.sp006045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DODGE F. A., FRANKENHAEUSER B. Sodium currents in the myelinated nerve fibre of Xenopus laevis investigated with the voltage clamp technique. J Physiol. 1959 Oct;148:188–200. doi: 10.1113/jphysiol.1959.sp006281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davis F. A. Axonal conduction studies based on some considerations of temperature effects in multiple sclerosis. Electroencephalogr Clin Neurophysiol. 1970 Mar;28(3):281–286. doi: 10.1016/0013-4694(70)90164-1. [DOI] [PubMed] [Google Scholar]
  5. Davis F. A., Becker F. O., Michael J. A., Sorensen E. Effect of intravenous sodium bicarbonate, disodium edetate (Na2EDTA), and hyperventilation on visual and oculomotor signs in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1970 Dec;33(6):723–732. doi: 10.1136/jnnp.33.6.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis F. A. Impairment of repetitive impulse conduction in experimentally demyelinated and pressure-injured nerves. J Neurol Neurosurg Psychiatry. 1972 Aug;35(4):537–544. doi: 10.1136/jnnp.35.4.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis F. A., Jacobson S. Altered thermal sensitivity in injured and demyelinated nerve. A possible model of temperature effects in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1971 Oct;34(5):551–561. doi: 10.1136/jnnp.34.5.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FITZHUGH R. Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber. Biophys J. 1962 Jan;2:11–21. doi: 10.1016/s0006-3495(62)86837-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FITZHUGH R. Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J Gen Physiol. 1960 May;43:867–896. doi: 10.1085/jgp.43.5.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FRANKENHAEUSER B. A QUANTITATIVE DESCRIPTION OF POTASSIUM CURRENTS IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS. J Physiol. 1963 Nov;169:424–430. doi: 10.1113/jphysiol.1963.sp007268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FRANKENHAEUSER B. Delayed currents in myelinated nerve fibres of Xenopus laevis investigated with voltage clamp technique. J Physiol. 1962 Jan;160:40–45. doi: 10.1113/jphysiol.1962.sp006832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. FRANKENHAEUSER B., HUXLEY A. F. THE ACTION POTENTIAL IN THE MYELINATED NERVE FIBER OF XENOPUS LAEVIS AS COMPUTED ON THE BASIS OF VOLTAGE CLAMP DATA. J Physiol. 1964 Jun;171:302–315. doi: 10.1113/jphysiol.1964.sp007378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. FRANKENHAEUSER B. INACTIVATION OF THE SODIUM-CARRYING MECHANISM IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS. J Physiol. 1963 Nov;169:445–451. doi: 10.1113/jphysiol.1963.sp007271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. FRANKENHAEUSER B. Instantaneous potassium currents in myelinated nerve fibres of Xenopus laevis. J Physiol. 1962 Jan;160:46–53. doi: 10.1113/jphysiol.1962.sp006833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. FRANKENHAEUSER B., MOORE L. E. THE EFFECT OF TEMPERATURE ON THE SODIUM AND POTASSIUM PERMEABILITY CHANGES IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS. J Physiol. 1963 Nov;169:431–437. doi: 10.1113/jphysiol.1963.sp007269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. FRANKENHAEUSER B. Potassium permeability in myelinated nerve fibres of Xenopus laevis. J Physiol. 1962 Jan;160:54–61. doi: 10.1113/jphysiol.1962.sp006834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. FRANKENHAEUSER B. Quantitative description of sodium currents in myelinated nerve fibres of Xenopus laevis. J Physiol. 1960 Jun;151:491–501. doi: 10.1113/jphysiol.1960.sp006455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. FRANKENHAEUSER B. Steady state inactivation of sodium permeability in myelinated nerve fibres of Xenopus laevis. J Physiol. 1959 Oct;148:671–676. doi: 10.1113/jphysiol.1959.sp006316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fishman H. M. Direct and rapid description of the individual ionic currents of squid axon membrane by ramp potential control. Biophys J. 1970 Sep;10(9):799–817. doi: 10.1016/S0006-3495(70)86336-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Frankenhaeuser B. Computed action potential in nerve from Xenopus laevis. J Physiol. 1965 Oct;180(4):780–787. doi: 10.1113/jphysiol.1965.sp007731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Goldman L., Albus J. S. Computation of impulse conduction in myelinated fibers; theoretical basis of the velocity-diameter relation. Biophys J. 1968 May;8(5):596–607. doi: 10.1016/S0006-3495(68)86510-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. HUXLEY A. F. Ion movements during nerve activity. Ann N Y Acad Sci. 1959 Aug 28;81:221–246. doi: 10.1111/j.1749-6632.1959.tb49311.x. [DOI] [PubMed] [Google Scholar]
  24. Hille B. Charges and potentials at the nerve surface. Divalent ions and pH. J Gen Physiol. 1968 Feb;51(2):221–236. doi: 10.1085/jgp.51.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hille B. The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion. J Gen Physiol. 1967 May;50(5):1287–1302. doi: 10.1085/jgp.50.5.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hutchinson N. A., Koles Z. J., Smith R. S. Conduction velocity in myelinated nerve fibres of Xenopus laevis. J Physiol. 1970 Jun;208(2):279–289. doi: 10.1113/jphysiol.1970.sp009119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Koles Z. J., Rasminsky M. A computer simulation of conduction in demyelinated nerve fibres. J Physiol. 1972 Dec;227(2):351–364. doi: 10.1113/jphysiol.1972.sp010036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McDonald W. I., Sears T. A. Effect of a demyelinating lesion on conduction in the central nervous system studied in single nerve fibres. J Physiol. 1970 Apr;207(2):53P–54P. [PubMed] [Google Scholar]
  29. NELSON D. A., McDOWELL F. The effects of induced hyperthermia on patients with multiple sclerosis. J Neurol Neurosurg Psychiatry. 1959 May;22(2):113–116. doi: 10.1136/jnnp.22.2.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Namerow N. S. Circadian temperature rhythm and vision in multiple sclerosis. Neurology. 1968 May;18(5):417–422. doi: 10.1212/wnl.18.5.417. [DOI] [PubMed] [Google Scholar]
  31. Namerow N. S. Somatosensory evoked responses in multiple sclerosis. Bull Los Angeles Neurol Soc. 1968 Apr;33(2):74–81. [PubMed] [Google Scholar]
  32. Narahashi T., Haas H. G. Interaction of DDT with the components of lobster nerve membrane conductance. J Gen Physiol. 1968 Feb;51(2):177–198. doi: 10.1085/jgp.51.2.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Narahashi T., Moore J. W., Shapiro B. I. Condylactis toxin: interaction with nerve membrane ionic conductances. Science. 1969 Feb 14;163(3868):680–681. doi: 10.1126/science.163.3868.680. [DOI] [PubMed] [Google Scholar]
  34. Narahashi T., Shapiro B. I., Deguchi T., Scuka M., Wang C. M. Effects of scorpion venom on squid axon membranes. Am J Physiol. 1972 Apr;222(4):850–857. doi: 10.1152/ajplegacy.1972.222.4.850. [DOI] [PubMed] [Google Scholar]
  35. Rasminsky M., Sears T. A. Internodal conduction in undissected demyelinated nerve fibres. J Physiol. 1972 Dec;227(2):323–350. doi: 10.1113/jphysiol.1972.sp010035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Smith R. S., Koles Z. J. Myelinated nerve fibers: computed effect of myelin thickness on conduction velocity. Am J Physiol. 1970 Nov;219(5):1256–1258. doi: 10.1152/ajplegacy.1970.219.5.1256. [DOI] [PubMed] [Google Scholar]
  37. WATSON C. W. Effect of lowering of body temperature on the symptoms and signs of multiple sclerosis. N Engl J Med. 1959 Dec 17;261:1253–1259. doi: 10.1056/NEJM195912172612501. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES