Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1974 Jun;37(6):704–710. doi: 10.1136/jnnp.37.6.704

Use of cerebrospinal fluid drawn at pneumoencephalography in the study of monoamine metabolism in man

E Garelis 1,1, T L Sourkes 1,2
PMCID: PMC494750  PMID: 4210686

Abstract

Concentrations of homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) were significantly higher in CSF obtained after injection of air during pneumoencephalography (PEG) than in lumbar CSF, as drawn before the injection. There was a high correlation between levels in the `mixed' and lumbar samples of CSF in the case of each of the two acids. The concentration of lumbar HVA, but not that of 5-HIAA, was negatively correlated with CSF pressure. 5-HIAA levels were low in both samples of CSF in a group of epileptics, by comparison with controls. In two patients with Kufs disease and in one with Niemann-Pick disease, the concentration of HVA was very low in the lumbar sample. The application of a standardized PEG technique in the study of monoamine metabolism in man is suggested.

Full text

PDF
704

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDEN N. E., ROOS B. E., WERDINIUS B. On the occurrence of homovanillic acid in brain and cerebrospinal fluid and its determination by a fluorometric method. Life Sci. 1963 Jul;(7):448–458. doi: 10.1016/0024-3205(63)90132-2. [DOI] [PubMed] [Google Scholar]
  2. ASHCROFT G. W., SHARMAN D. F. 5-Hydroxyindoles in human cerebrospinal fluids. Nature. 1960 Jun 25;186:1050–1051. doi: 10.1038/1861050a0. [DOI] [PubMed] [Google Scholar]
  3. Anderson H., Roos B. E. The effect of probenecid on the elimination from CSF of intraventricularly injected 5-hydroxyindolecetic acid in normal and hydrocephalic dogs. J Pharm Pharmacol. 1968 Nov;20(11):879–881. doi: 10.1111/j.2042-7158.1968.tb09666.x. [DOI] [PubMed] [Google Scholar]
  4. Andersson H., Roos B. E. 5-hydroxyindoleacetic acid in cerebrospinal fluid of hydrocephalic children. Acta Paediatr Scand. 1969 Nov;58(6):601–608. doi: 10.1111/j.1651-2227.1969.tb04768.x. [DOI] [PubMed] [Google Scholar]
  5. Ashcroft G. W., Crawford T. B., Eccleston D., Sharman D. F., MacDougall E. J., Stanton J. B., Binns J. K. 5-hydroxyindole compounds in the cerebrospinal fluid of patients with psychiatric or neurological diseases. Lancet. 1966 Nov 12;2(7472):1049–1052. doi: 10.1016/s0140-6736(66)92028-9. [DOI] [PubMed] [Google Scholar]
  6. Ashcroft G. W., Dow R. C., Moir A. T. The active transport of 5-hydroxyindol-3-ylacetic acid and 3-methoxy-4-hydroxyphenylacetic acid from a recirculatory perfusion system of the cerebral ventricles of the unanaesthetized dog. J Physiol. 1968 Dec;199(2):397–425. doi: 10.1113/jphysiol.1968.sp008660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Barolin G. S., Hornykiewicz O. Zur diagnostischen Wertigkeit der Homovanillinsäure im Liquor cerebrospinalis. Wien Klin Wochenschr. 1967 Nov 3;79(44):815–818. [PubMed] [Google Scholar]
  8. Bernheimer H., Birkmayer W., Hornykiewicz O. Homovanillinsäure im Liquor cerebrospinalis: Untersuchungen beim Parkinson-Syndrom und anderen Erkrankungen des ZNS. Wien Klin Wochenschr. 1966 Jun 10;78(23):417–419. [PubMed] [Google Scholar]
  9. Bowers M. B., Jr Deficient transport mechanism for the removal of acid monoamine metabolites from cerebrospinal fluid. Brain Res. 1969 Oct;15(2):522–524. doi: 10.1016/0006-8993(69)90174-7. [DOI] [PubMed] [Google Scholar]
  10. Bowers M. B., Jr, Heninger G. R., Gerbode F. Cerebrospinal fluid 5-hydroxyindoleactiic acid and homovanillic acid in psychiatric patients. Int J Neuropharmacol. 1969 May;8(3):255–262. doi: 10.1016/0028-3908(69)90046-x. [DOI] [PubMed] [Google Scholar]
  11. Bulat M., Zivković B. Origin of 5-hydroxyindoleacetic acid in the spinl fluid. Science. 1971 Aug 20;173(3998):738–740. doi: 10.1126/science.173.3998.738. [DOI] [PubMed] [Google Scholar]
  12. Chase T. N., Katz R. I., Kopin I. J. Effect of diazepam on fate of intracisternally injected serotonin-C14. Neuropharmacology. 1970 Mar;9(2):103–108. doi: 10.1016/0028-3908(70)90053-5. [DOI] [PubMed] [Google Scholar]
  13. Corrodi H., Fuxe K., Hökfelt T. The effect of some psychoactive drugs on central monoamine neurons. Eur J Pharmacol. 1967 Sep;1(5):363–368. doi: 10.1016/0014-2999(67)90096-9. [DOI] [PubMed] [Google Scholar]
  14. Corrodi H., Fuxe K., Hökfelt T. The effects of barbiturates on the activity of the catecholamine neurones in the rat brain. J Pharm Pharmacol. 1966 Aug;18(8):556–558. doi: 10.1111/j.2042-7158.1966.tb07932.x. [DOI] [PubMed] [Google Scholar]
  15. Coyle J. T., Snyder S. H. Antiparkinsonian drugs: inhibition of dopamine uptake in the corpus striatum as a possible mechanism of action. Science. 1969 Nov 14;166(3907):899–901. doi: 10.1126/science.166.3907.899. [DOI] [PubMed] [Google Scholar]
  16. Cserr H. F., VanDyke D. H. 5-hydroxyindoleacetic acid accumulation by isolated choroid plexus. Am J Physiol. 1971 Mar;220(3):718–723. doi: 10.1152/ajplegacy.1971.220.3.718. [DOI] [PubMed] [Google Scholar]
  17. Curzon G., Gumpert E. J., Sharpe D. M. Amine metabolites in the lumbar cerebrospinal fluid of humans with restricted flow of cerebrospinal fluid. Nat New Biol. 1971 Jun 9;231(23):189–191. doi: 10.1038/newbio231189a0. [DOI] [PubMed] [Google Scholar]
  18. Eccleston D., Ashcroft G. W., Crawford T. B. Effect of tryptophan administration on 5HIAA in cerebrospinal fluid in man. J Neurol Neurosurg Psychiatry. 1970 Apr;33(2):269–272. doi: 10.1136/jnnp.33.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Eccleston D., Ashcroft G. W., Moir A. T., Parker-Rhodes A., Lutz W., O'Mahoney D. P. A comparison of 5-hydroxyindoles in various regions of dog brain and cerebrospinal fluid. J Neurochem. 1968 Sep;15(9):947–957. doi: 10.1111/j.1471-4159.1968.tb11637.x. [DOI] [PubMed] [Google Scholar]
  20. Forn J. Active transport of 5-hydroxyindoleacetic acid by the rabbit choroid plexus in vitro. Blockade by probenecid and metabolic inhibitors. Biochem Pharmacol. 1972 Mar 1;21(5):619–624. doi: 10.1016/0006-2952(72)90053-6. [DOI] [PubMed] [Google Scholar]
  21. Garelis E., Sourkes T. L. Sites of origin in the central nervous system of monoamine metabolites measured in human cerebrospinal fluid. J Neurol Neurosurg Psychiatry. 1973 Aug;36(4):625–629. doi: 10.1136/jnnp.36.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gottfries C. G., Gottfries I., Johansson B., Olsson R., Persson T., Roos B. E., Sjöström R. Acid monoamine metabolites in human cerebrospinal fluid and their relations to age and sex. Neuropharmacology. 1971 Nov;10(6):665–672. doi: 10.1016/0028-3908(71)90081-5. [DOI] [PubMed] [Google Scholar]
  23. Guldberg H. C., Turner J. W., Hanieh A., Ashcroft G. W., Crawford T. B., Perry W. L., Gillingham F. J. On the occurrence of homovanillic acid and 5-hydroxyindol-3-ylacetic acid in the ventricular C.S.F. of patients suffering from parkinsonism. Confin Neurol. 1967;29(2):73–77. doi: 10.1159/000103680. [DOI] [PubMed] [Google Scholar]
  24. Johansson B., Roos B. E., Wålinder J. 5-HIAA and HVA in cerebrospinal fluid during delirium acutum. N Engl J Med. 1972 May 25;286(21):1160–1161. doi: 10.1056/NEJM197205252862117. [DOI] [PubMed] [Google Scholar]
  25. Moir A. T., Ashcroft G. W., Crawford T. B., Eccleston D., Guldberg H. C. Cerebral metabolites in cerebrospinal fluid as a biochemical approach to the brain. Brain. 1970;93(2):357–368. doi: 10.1093/brain/93.2.357. [DOI] [PubMed] [Google Scholar]
  26. Papeschi R., McClure D. J. Homovanillic and 5-hydroxyindoleacetic acid in cerebrospinal fluid of depressed patients. Arch Gen Psychiatry. 1971 Oct;25(4):354–358. doi: 10.1001/archpsyc.1971.01750160066012. [DOI] [PubMed] [Google Scholar]
  27. Papeschi R., Molina-Negro P., Sourkes T. L., Erba G. The concentration of homovanillic and 5-hydroxyindoleacetic acids in ventricular and lumbar CSF. Studies in patients with extrapyramidal disorders, epilepsy, and other diseases. Neurology. 1972 Nov;22(11):1151–1159. doi: 10.1212/wnl.22.11.1151. [DOI] [PubMed] [Google Scholar]
  28. Persson T., Roos B. E. Acid metabolites from monoamines in cerebrospinal fluid of chronic schizophrenics. Br J Psychiatry. 1969 Jan;115(518):95–98. doi: 10.1192/bjp.115.518.95. [DOI] [PubMed] [Google Scholar]
  29. Pletscher A., Bartholini G., Tissot R. Metabolic fate of l-[14C] DOPA in cerebrospinal fluid and blood plasma of humans. Brain Res. 1967 Feb;4(1):106–109. doi: 10.1016/0006-8993(67)90154-0. [DOI] [PubMed] [Google Scholar]
  30. Post R. M., Goodwin F. K., Gordon E., Watkin D. M. Amine metabolites in human cerebrospinal fluid: effects of cord transection and spinal fluid block. Science. 1973 Mar 2;179(4076):897–899. doi: 10.1126/science.179.4076.897. [DOI] [PubMed] [Google Scholar]
  31. Rimón R., Roos B. E., Räkköläinen V., Alanen Y. The content of 5-hydroxyindoleacetic acid and homovanillic acid in the cerebrospinal fluid of patients with acute schizophrenia. J Psychosom Res. 1971 Sep;15(3):375–378. doi: 10.1016/0022-3999(71)90051-1. [DOI] [PubMed] [Google Scholar]
  32. Taylor K. M., Laverty R. The effect of chlordiazepoxide, diazepam and nitrazepam on catecholamine metabolism in regions of the rat brain. Eur J Pharmacol. 1969 Dec;8(3):296–301. doi: 10.1016/0014-2999(69)90038-7. [DOI] [PubMed] [Google Scholar]
  33. Weir R. L., Chase T. N., Ng L. K., Kopin I. J. 5-hydroxyindoleacetic cid in spinal fluid: relative contribution from brain and spinal cord. Brain Res. 1973 Mar 30;52:409–412. doi: 10.1016/0006-8993(73)90682-3. [DOI] [PubMed] [Google Scholar]
  34. Wise C. D., Berger B. D., Stein L. Benzodiazepines: anxiety-reducing activity by reduction of serotonin turnover in the brain. Science. 1972 Jul 14;177(4044):180–183. doi: 10.1126/science.177.4044.180. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES