Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Jul 15;89(14):6257–6261. doi: 10.1073/pnas.89.14.6257

Sensitivity to vanadate and isoforms of subunits A and B distinguish the osteoclast proton pump from other vacuolar H+ ATPases.

D Chatterjee 1, M Chakraborty 1, M Leit 1, L Neff 1, S Jamsa-Kellokumpu 1, R Fuchs 1, R Baron 1
PMCID: PMC49479  PMID: 1385872

Abstract

Analysis of proton (H+) transport by inside-out vesicles derived from highly purified chicken osteoclast (OC) membranes has revealed the presence of a newly discovered type of vacuolar H+ ATPase (V-ATPase). Unlike vesicles derived from any other cell type or organelle, H+ transport in OC-derived vesicles is sensitive to V-ATPase inhibitors (N-ethylmaleimide and Bafilomycin A1) and vanadate (IC50, 100 microM), an inhibitor previously found to affect only P-type ATPases. The OC H+ ATPase contains several V-like subunits (115, 39, and 16 kDa) but subunits A and B of the catalytic domain of the enzyme differ from that of other V-ATPases. In OCs, subunit A has a mass of 63 kDa instead of the 67-70 kDa expressed in monocytes, macrophages, and kidney microsomes, which contain a vanadate-insensitive H+ ATPase. Moreover, two types of 57- to 60-kDa B subunits are also found: one is expressed predominantly in OCs and the other is expressed in kidney microsomes. The OC H+ pump may therefore constitute a class of H+ ATPase with a unique pharmacology and specific isoforms of two subunits in the catalytic portion of the enzyme. This H+ ATPase is involved in resorption of bone and may be expressed in a cell-specific manner, thereby opening possibilities for therapeutic intervention.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achee F. M., Togulga G., Gabay S. Studies of monoamine oxidases: properties of the enzyme in bovine and rabbit brain mitochondria. J Neurochem. 1974 May;22(5):651–661. doi: 10.1111/j.1471-4159.1974.tb04277.x. [DOI] [PubMed] [Google Scholar]
  2. Al-Awqati Q. Proton-translocating ATPases. Annu Rev Cell Biol. 1986;2:179–199. doi: 10.1146/annurev.cb.02.110186.001143. [DOI] [PubMed] [Google Scholar]
  3. Baron R., Neff L., Louvard D., Courtoy P. J. Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol. 1985 Dec;101(6):2210–2222. doi: 10.1083/jcb.101.6.2210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bekker P. J., Gay C. V. Biochemical characterization of an electrogenic vacuolar proton pump in purified chicken osteoclast plasma membrane vesicles. J Bone Miner Res. 1990 Jun;5(6):569–579. doi: 10.1002/jbmr.5650050606. [DOI] [PubMed] [Google Scholar]
  5. Billecocq A., Emanuel J. R., Levenson R., Baron R. 1 alpha,25-dihydroxyvitamin D3 regulates the expression of carbonic anhydrase II in nonerythroid avian bone marrow cells. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6470–6474. doi: 10.1073/pnas.87.16.6470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blair H. C., Teitelbaum S. L., Ghiselli R., Gluck S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science. 1989 Aug 25;245(4920):855–857. doi: 10.1126/science.2528207. [DOI] [PubMed] [Google Scholar]
  7. Bowman B. J., Allen R., Wechser M. A., Bowman E. J. Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-2 encoding the 57-kDa polypeptide and comparison to vma-1. J Biol Chem. 1988 Oct 5;263(28):14002–14007. [PubMed] [Google Scholar]
  8. Bowman B. J., Dschida W. J., Harris T., Bowman E. J. The vacuolar ATPase of Neurospora crassa contains an F1-like structure. J Biol Chem. 1989 Sep 15;264(26):15606–15612. [PubMed] [Google Scholar]
  9. Bowman E. J., Siebers A., Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972–7976. doi: 10.1073/pnas.85.21.7972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bowman E. J., Tenney K., Bowman B. J. Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-1 encoding the 67-kDa subunit reveals homology to other ATPases. J Biol Chem. 1988 Oct 5;263(28):13994–14001. [PubMed] [Google Scholar]
  11. Brown D., Gluck S., Hartwig J. Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ATPase. J Cell Biol. 1987 Oct;105(4):1637–1648. doi: 10.1083/jcb.105.4.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Forgac M. Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev. 1989 Jul;69(3):765–796. doi: 10.1152/physrev.1989.69.3.765. [DOI] [PubMed] [Google Scholar]
  13. Fuchs R., Mâle P., Mellman I. Acidification and ion permeabilities of highly purified rat liver endosomes. J Biol Chem. 1989 Feb 5;264(4):2212–2220. [PubMed] [Google Scholar]
  14. Fuchs R., Schmid S., Mellman I. A possible role for Na+,K+-ATPase in regulating ATP-dependent endosome acidification. Proc Natl Acad Sci U S A. 1989 Jan;86(2):539–543. doi: 10.1073/pnas.86.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Futai M., Noumi T., Maeda M. Mechanism of F1-ATPase studied by the genetic approach. J Bioenerg Biomembr. 1988 Aug;20(4):469–480. doi: 10.1007/BF00762204. [DOI] [PubMed] [Google Scholar]
  16. Glazer A. N. Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem. 1989 Jan 5;264(1):1–4. [PubMed] [Google Scholar]
  17. Gluck S., Caldwell J. Immunoaffinity purification and characterization of vacuolar H+ATPase from bovine kidney. J Biol Chem. 1987 Nov 15;262(32):15780–15789. [PubMed] [Google Scholar]
  18. Hell J. W., Maycox P. R., Stadler H., Jahn R. Uptake of GABA by rat brain synaptic vesicles isolated by a new procedure. EMBO J. 1988 Oct;7(10):3023–3029. doi: 10.1002/j.1460-2075.1988.tb03166.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lai S. P., Randall S. K., Sze H. Peripheral and integral subunits of the tonoplast H+-ATPase from oat roots. J Biol Chem. 1988 Nov 15;263(32):16731–16737. [PubMed] [Google Scholar]
  20. Lauter C. J., Solyom A., Trams E. G. Comparative studies on enzyme markers of liver plasma membranes. Biochim Biophys Acta. 1972 May 9;266(2):511–523. doi: 10.1016/0005-2736(72)90107-1. [DOI] [PubMed] [Google Scholar]
  21. Mandala S. M., Slayman C. W. The amino and carboxyl termini of the Neurospora plasma membrane H+-ATPase are cytoplasmically located. J Biol Chem. 1989 Sep 25;264(27):16276–16281. [PubMed] [Google Scholar]
  22. Maycox P. R., Deckwerth T., Hell J. W., Jahn R. Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J Biol Chem. 1988 Oct 25;263(30):15423–15428. [PubMed] [Google Scholar]
  23. Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
  24. Moriyama Y., Nelson N. Purification and properties of a vanadate- and N-ethylmaleimide-sensitive ATPase from chromaffin granule membranes. J Biol Chem. 1988 Jun 15;263(17):8521–8527. [PubMed] [Google Scholar]
  25. Nelson N. Structure and pharmacology of the proton-ATPases. Trends Pharmacol Sci. 1991 Feb;12(2):71–75. doi: 10.1016/0165-6147(91)90501-i. [DOI] [PubMed] [Google Scholar]
  26. Nelson N., Taiz L. The evolution of H+-ATPases. Trends Biochem Sci. 1989 Mar;14(3):113–116. doi: 10.1016/0968-0004(89)90134-5. [DOI] [PubMed] [Google Scholar]
  27. Ohkuma S., Moriyama Y., Takano T. Identification and characterization of a proton pump on lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Proc Natl Acad Sci U S A. 1982 May;79(9):2758–2762. doi: 10.1073/pnas.79.9.2758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schmid S., Fuchs R., Kielian M., Helenius A., Mellman I. Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification-defective mutants. J Cell Biol. 1989 Apr;108(4):1291–1300. doi: 10.1083/jcb.108.4.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Südhof T. C., Fried V. A., Stone D. K., Johnston P. A., Xie X. S. Human endomembrane H+ pump strongly resembles the ATP-synthetase of Archaebacteria. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6067–6071. doi: 10.1073/pnas.86.16.6067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Varshney G. C., Henry J., Kahn A., Phan-Dinh-Tuy F. Tyrosine kinases in normal human blood cells. Platelet but not erythrocyte band 3 tyrosine kinase is p60c-src. FEBS Lett. 1986 Sep 1;205(1):97–103. doi: 10.1016/0014-5793(86)80873-0. [DOI] [PubMed] [Google Scholar]
  31. Vänänen H. K., Karhukorpi E. K., Sundquist K., Wallmark B., Roininen I., Hentunen T., Tuukkanen J., Lakkakorpi P. Evidence for the presence of a proton pump of the vacuolar H(+)-ATPase type in the ruffled borders of osteoclasts. J Cell Biol. 1990 Sep;111(3):1305–1311. doi: 10.1083/jcb.111.3.1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wang S. Y., Moriyama Y., Mandel M., Hulmes J. D., Pan Y. C., Danho W., Nelson H., Nelson N. Cloning of cDNA encoding a 32-kDa protein. An accessory polypeptide of the H+-ATPase from chromaffin granules. J Biol Chem. 1988 Nov 25;263(33):17638–17642. [PubMed] [Google Scholar]
  33. Wang Z. Q., Gluck S. Isolation and properties of bovine kidney brush border vacuolar H(+)-ATPase. A proton pump with enzymatic and structural differences from kidney microsomal H(+)-ATPase. J Biol Chem. 1990 Dec 15;265(35):21957–21965. [PubMed] [Google Scholar]
  34. Yamashiro D. J., Fluss S. R., Maxfield F. R. Acidification of endocytic vesicles by an ATP-dependent proton pump. J Cell Biol. 1983 Sep;97(3):929–934. doi: 10.1083/jcb.97.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ysern X., Amzel L. M., Pedersen P. L. ATP synthases--structure of the F1-moiety and its relationship to function and mechanism. J Bioenerg Biomembr. 1988 Aug;20(4):423–450. doi: 10.1007/BF00762202. [DOI] [PubMed] [Google Scholar]
  36. Zambonin Zallone A., Teti A., Primavera M. V. Isolated osteoclasts in primary culture: first observations on structure and survival in culture media. Anat Embryol (Berl) 1982 Dec;165(3):405–413. doi: 10.1007/BF00305576. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES