Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Jul 15;89(14):6477–6481. doi: 10.1073/pnas.89.14.6477

Targeting antiretroviral nucleoside analogues in phosphorylated form to macrophages: in vitro and in vivo studies.

M Magnani 1, L Rossi 1, G Brandi 1, G F Schiavano 1, M Montroni 1, G Piedimonte 1
PMCID: PMC49524  PMID: 1631145

Abstract

A number of nucleoside analogues are active against the infectivity of human immunodeficiency virus (HIV); however, their use is limited by toxic side effects and by limited phosphorylation in the infected cells. In an attempt to overcome these problems, a drug delivery system has been developed. A prototype of these drugs in a form already phosphorylated (2',3'-dideoxycytidine 5'-triphosphate; ddCTP) was encapsulated into erythrocytes. Subsequently, by the addition of Zn, an arrangement of band 3 in clusters was induced (band 3 is the major transmembrane protein in erythrocytes). The immune system recognizes these clusters as nonself, promoting autologous IgG binding and phagocytosis by cells of the monocyte-macrophage lineage. In this way, ddCTP encapsulated into erythrocytes was delivered to macrophage cells, where concentrations greater than 2 microM were found. Addition of ddCTP-loaded erythrocytes to macrophages previously infected by HIV-1 results in almost complete inhibition of HIV production over 3 weeks in culture. Administration of ddCTP-loaded erythrocytes to LP-BM5-infected mice at 10-day intervals over a period of 3 months results in reduction of lymphoadenopathy, splenomegaly, and hypergammaglobulinemia. Thus, the delivery of nucleoside analogues in phosphorylated form is feasible, and selective targeting to virus reservoirs (macrophage cells) can be accomplished by the use of autologous erythrocytes.

Full text

PDF
6477

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahluwalia G., Cooney D. A., Mitsuya H., Fridland A., Flora K. P., Hao Z., Dalal M., Broder S., Johns D. G. Initial studies on the cellular pharmacology of 2',3'-dideoxyinosine, an inhibitor of HIV infectivity. Biochem Pharmacol. 1987 Nov 15;36(22):3797–3800. doi: 10.1016/0006-2952(87)90440-0. [DOI] [PubMed] [Google Scholar]
  2. Balzarini J., Pauwels R., Baba M., Herdewijn P., de Clercq E., Broder S., Johns D. G. The in vitro and in vivo anti-retrovirus activity, and intracellular metabolism of 3'-azido-2',3'-dideoxythymidine and 2',3'-dideoxycytidine are highly dependent on the cell species. Biochem Pharmacol. 1988 Mar 1;37(5):897–903. doi: 10.1016/0006-2952(88)90178-5. [DOI] [PubMed] [Google Scholar]
  3. Basham T., Holdener T., Merigan T. Intermittent, alternating, and concurrent regimens of zidovudine and 2'-3' dideoxycytidine in the LP-BM5 murine induced immunodeficiency model. J Infect Dis. 1991 Apr;163(4):869–872. doi: 10.1093/infdis/163.4.869. [DOI] [PubMed] [Google Scholar]
  4. Brandi G., Rossi L., Schiavano G. F., Salvaggio L., Albano A., Magnani M. In vitro toxicity and metabolism of 2',3'-dideoxycytidine, an inhibitor of human immunodeficiency virus infectivity. Chem Biol Interact. 1991;79(1):53–64. doi: 10.1016/0009-2797(91)90052-9. [DOI] [PubMed] [Google Scholar]
  5. Broder S. Pharmacodynamics of 2',3'-dideoxycytidine: an inhibitor of human immunodeficiency virus. Am J Med. 1990 May 21;88(5B):2S–7S. doi: 10.1016/0002-9343(90)90413-8. [DOI] [PubMed] [Google Scholar]
  6. Carson D. A., Haertle T., Wasson D. B., Richman D. D. Biochemical genetic analysis of 2',3'-dideoxyadenosine metabolism in human T lymphocytes. Biochem Biophys Res Commun. 1988 Mar 15;151(2):788–793. doi: 10.1016/s0006-291x(88)80350-4. [DOI] [PubMed] [Google Scholar]
  7. Clague M. J., Cherry R. J. A comparative study of band 3 aggregation in erythrocyte membranes by melittin and other cationic agents. Biochim Biophys Acta. 1989 Mar 27;980(1):93–99. doi: 10.1016/0005-2736(89)90204-6. [DOI] [PubMed] [Google Scholar]
  8. Cooley T. P., Kunches L. M., Saunders C. A., Ritter J. K., Perkins C. J., McLaren C., McCaffrey R. P., Liebman H. A. Once-daily administration of 2',3'-dideoxyinosine (ddI) in patients with the acquired immunodeficiency syndrome or AIDS-related complex. Results of a Phase I trial. N Engl J Med. 1990 May 10;322(19):1340–1345. doi: 10.1056/NEJM199005103221902. [DOI] [PubMed] [Google Scholar]
  9. Cooney D. A., Dalal M., Mitsuya H., McMahon J. B., Nadkarni M., Balzarini J., Broder S., Johns D. G. Initial studies on the cellular pharmacology of 2',3-dideoxycytidine, an inhibitor of HTLV-III infectivity. Biochem Pharmacol. 1986 Jul 1;35(13):2065–2068. doi: 10.1016/0006-2952(86)90571-x. [DOI] [PubMed] [Google Scholar]
  10. Gangemi J. D., Cozens R. M., De Clercq E., Balzarini J., Hochkeppel H. K. 9-(2-Phosphonylmethoxyethyl)adenine in the treatment of murine acquired immunodeficiency disease and opportunistic herpes simplex virus infections. Antimicrob Agents Chemother. 1989 Nov;33(11):1864–1868. doi: 10.1128/aac.33.11.1864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gartner S., Markovits P., Markovitz D. M., Kaplan M. H., Gallo R. C., Popovic M. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science. 1986 Jul 11;233(4760):215–219. doi: 10.1126/science.3014648. [DOI] [PubMed] [Google Scholar]
  12. Hersh E. M., Funk C. Y., Ryschon K. L., Petersen E. A., Mosier D. E. Effective therapy of the LP-BM5 murine retrovirus-induced lymphoproliferative immunodeficiency disease with diethyldithiocarbamate. AIDS Res Hum Retroviruses. 1991 Jun;7(6):553–561. doi: 10.1089/aid.1991.7.553. [DOI] [PubMed] [Google Scholar]
  13. Hui S. W., Stewart C. M., Cherry R. J. Electron microscopic observation of the aggregation of membrane proteins in human erythrocyte by melittin. Biochim Biophys Acta. 1990 Apr 30;1023(3):335–340. doi: 10.1016/0005-2736(90)90124-7. [DOI] [PubMed] [Google Scholar]
  14. Johnson M. A., Ahluwalia G., Connelly M. C., Cooney D. A., Broder S., Johns D. G., Fridland A. Metabolic pathways for the activation of the antiretroviral agent 2',3'-dideoxyadenosine in human lymphoid cells. J Biol Chem. 1988 Oct 25;263(30):15354–15357. [PubMed] [Google Scholar]
  15. Jolicoeur P. Murine acquired immunodeficiency syndrome (MAIDS): an animal model to study the AIDS pathogenesis. FASEB J. 1991 Jul;5(10):2398–2405. doi: 10.1096/fasebj.5.10.2065888. [DOI] [PubMed] [Google Scholar]
  16. Lambert J. S., Seidlin M., Reichman R. C., Plank C. S., Laverty M., Morse G. D., Knupp C., McLaren C., Pettinelli C., Valentine F. T. 2',3'-dideoxyinosine (ddI) in patients with the acquired immunodeficiency syndrome or AIDS-related complex. A phase I trial. N Engl J Med. 1990 May 10;322(19):1333–1340. doi: 10.1056/NEJM199005103221901. [DOI] [PubMed] [Google Scholar]
  17. Lelkes G., Fodor I., Lelkes G., Hollán S. R. The mobility of intramembrane particles in non-haemolysed human erythrocytes. Factors affecting acridine-orange-induced particle aggregation. J Cell Sci. 1986 Dec;86:57–67. doi: 10.1242/jcs.86.1.57. [DOI] [PubMed] [Google Scholar]
  18. Lutz H. U., Bussolino F., Flepp R., Fasler S., Stammler P., Kazatchkine M. D., Arese P. Naturally occurring anti-band-3 antibodies and complement together mediate phagocytosis of oxidatively stressed human erythrocytes. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7368–7372. doi: 10.1073/pnas.84.21.7368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Meltzer M. S., Skillman D. R., Gomatos P. J., Kalter D. C., Gendelman H. E. Role of mononuclear phagocytes in the pathogenesis of human immunodeficiency virus infection. Annu Rev Immunol. 1990;8:169–194. doi: 10.1146/annurev.iy.08.040190.001125. [DOI] [PubMed] [Google Scholar]
  20. Mitsuya H., Broder S. Strategies for antiviral therapy in AIDS. 1987 Feb 26-Mar 4Nature. 325(6107):773–778. doi: 10.1038/325773a0. [DOI] [PubMed] [Google Scholar]
  21. Mitsuya H., Yarchoan R., Broder S. Molecular targets for AIDS therapy. Science. 1990 Sep 28;249(4976):1533–1544. doi: 10.1126/science.1699273. [DOI] [PubMed] [Google Scholar]
  22. Mitsuya H., Yarchoan R., Kageyama S., Broder S. Targeted therapy of human immunodeficiency virus-related disease. FASEB J. 1991 Jul;5(10):2369–2381. doi: 10.1096/fasebj.5.10.1712326. [DOI] [PubMed] [Google Scholar]
  23. Mosier D. E., Yetter R. A., Morse H. C., 3rd Functional T lymphocytes are required for a murine retrovirus-induced immunodeficiency disease (MAIDS). J Exp Med. 1987 Jun 1;165(6):1737–1742. doi: 10.1084/jem.165.6.1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ohnota H., Okada Y., Ushijima H., Kitamura T., Komuro K., Mizuochi T. 3'-Azido-3'-deoxythymidine prevents induction of murine acquired immunodeficiency syndrome in C57BL/10 mice infected with LP-BM5 murine leukemia viruses, a possible animal model for antiretroviral drug screening. Antimicrob Agents Chemother. 1990 Apr;34(4):605–609. doi: 10.1128/aac.34.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Patel S. S., Szebeni J., Wahl L. M., Weinstein J. N. Differential inhibition of 2'-deoxycytidine salvage as a possible mechanism for potentiation of the anti-human immunodeficiency virus activity of 2',3'-dideoxycytidine by dipyridamole. Antimicrob Agents Chemother. 1991 Jun;35(6):1250–1253. doi: 10.1128/aac.35.6.1250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Starnes M. C., Cheng Y. C. Cellular metabolism of 2',3'-dideoxycytidine, a compound active against human immunodeficiency virus in vitro. J Biol Chem. 1987 Jan 25;262(3):988–991. [PubMed] [Google Scholar]
  27. Szebeni J., Wahl S. M., Popovic M., Wahl L. M., Gartner S., Fine R. L., Skaleric U., Friedmann R. M., Weinstein J. N. Dipyridamole potentiates the inhibition by 3'-azido-3'-deoxythymidine and other dideoxynucleosides of human immunodeficiency virus replication in monocyte-macrophages. Proc Natl Acad Sci U S A. 1989 May;86(10):3842–3846. doi: 10.1073/pnas.86.10.3842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Turrini F., Arese P., Yuan J., Low P. S. Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis. J Biol Chem. 1991 Dec 15;266(35):23611–23617. [PubMed] [Google Scholar]
  29. Valentin A., Albert J., Fenyö E. M., Asjö B. HIV-1 infection of normal human macrophage cultures: implication for silent infection. Virology. 1990 Aug;177(2):790–794. doi: 10.1016/0042-6822(90)90551-2. [DOI] [PubMed] [Google Scholar]
  30. Yarchoan R., Perno C. F., Thomas R. V., Klecker R. W., Allain J. P., Wills R. J., McAtee N., Fischl M. A., Dubinsky R., McNeely M. C. Phase I studies of 2',3'-dideoxycytidine in severe human immunodeficiency virus infection as a single agent and alternating with zidovudine (AZT). Lancet. 1988 Jan 16;1(8577):76–81. doi: 10.1016/s0140-6736(88)90283-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES