Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2016 Jul 21.
Published in final edited form as: Med Biol Eng Comput. 2016 Jan;54(1):19–22. doi: 10.1007/s11517-016-1452-6

Erratum to: Implantable neurotechnologies: bidirectional neural interfaces—applications and VLSI circuit implementations

Elliot Greenwald 1,, Matthew R Masters 1, Nitish V Thakor 1,2
PMCID: PMC4955539  NIHMSID: NIHMS801740  PMID: 26924780

The original article was published with the following errors.

In the introduction section, at the end of the final paragraph, the following sentences were missed.

“This review is complemented by three companion papers with emphases on electrodes [103], integrated circuit amplifiers [92], and stimulators [89]. Together, they highlight milestones and challenges in the field of implantable neuroprostheses.”

Reference 46 was incorrect. The correct reference is given below:

Fetz EE (2015) Chapter 12—restoring motor function with bidirectional neural interfaces. In: Dancause N, Nadeau S, Rossignol S (eds) Sensorimotor rehabilitation at the crossroads of basic and clinical sciences, vol 218 of progress in brain research. Elsevier, Amsterdam, pp 241–252

Reference 70 was incorrect. Hence, it should be removed and the References 7188 should be renumbered as 7087.

In Reference 81 (now it is Ref. 80), the journal name was incorrect. The correct journal name should read as “Front Human Neurosci”. The correct reference is given below:

Liew S, Santarnecchi E, Buch E, Cohen L (2014) Noninvasive brain stimulation in neurorehabilitation: Local and distant effects for motor recovery. Front Human Neurosci 8:378

The following new reference should be inserted as Reference 88:

Muller R, Gambini S, Rabaey J (2012) A 0.013 mm2 5 μW DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J Solid–State Circuits 47(1):232–243

The following new reference should be inserted as Reference 93:

Nishimura Y, Perlmutter SI, Eaton RW, Fetz EE (2013) Spike-timing-dependent plasticity in primate corticospinal connections induced during free behavior. Neuron 80(5):1301–1309

Reference 93101 should be renumbered as 94102. Reference 102 should be listed as Reference 104.

The following new reference should be inserted as Reference 105:

Plow EB, Carey JR, Nudo RJ, Pascual-Leone A (2009) Invasive cortical stimulation to promote recovery of function after stroke a critical appraisal. Stroke 40(5):1926–1931

Reference 104140 should be renumbered as 106142. The reference citations in the text should also be changed accordingly.

All the above-mentioned changes have been corrected in the original article.

The amended list of references 70142 is as follows:

Contributor Information

Elliot Greenwald, Email: egreenw3@jhu.edu.

Nitish V. Thakor, Email: nthakor@jhu.edu, sinapsedirector@gmail.com.

References

  • 70.Kühn AA, Kempf F, Brücke C, Doyle LG, Martinez-Torres I, Pogosyan A, Trottenberg T, Kupsch A, Schneider GH, Hariz MI, et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory β activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci. 2008;28(24):6165–6173. doi: 10.1523/JNEUROSCI.0282-08.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Kühn AA, Kupsch A, Schneider GH, Brown P. Reduction in subthalamic 8–35 hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci. 2006;23(7):1956–1960. doi: 10.1111/j.1460-9568.2006.04717.x. [DOI] [PubMed] [Google Scholar]
  • 72.Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, Thomson S, Callaghan OJ, Eisenberg E, Milbouw G, et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain. 2007;132(1):179–188. doi: 10.1016/j.pain.2007.07.028. [DOI] [PubMed] [Google Scholar]
  • 73.Kuncel AM, Grill WM. Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol. 2004;115(11):2431–2441. doi: 10.1016/j.clinph.2004.05.031. [DOI] [PubMed] [Google Scholar]
  • 74.Kuo MF, Paulus W, Nitsche MA. Therapeutic effects of non-invasive brain stimulation with direct currents (tdcs) in neuropsychiatric diseases. Neuroimage. 2014;85:948–960. doi: 10.1016/j.neuroimage.2013.05.117. [DOI] [PubMed] [Google Scholar]
  • 75.Lacour SP, Fitzgerald J, Lago N, Tarte E, McMahon S, Fawcett J. Long micro-channel electrode arrays: A novel type of regenerative peripheral nerve interface. IEEE Trans Neural Syst Rehabil Eng. 2009;17(5):454–460. doi: 10.1109/TNSRE.2009.2031241. [DOI] [PubMed] [Google Scholar]
  • 76.Laxpati NG, Mahmoudi B, Gutekunst CA, Newman JP, Zeller-Townson R, Gross RE. Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with neurorighter. Front Neuroeng. 2014;7(40):1–15. doi: 10.3389/fneng.2014.00040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, Tyler WJ. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17(2):322–329. doi: 10.1038/nn.3620. [DOI] [PubMed] [Google Scholar]
  • 78.Lesser RP, Kim SH, Beyderman L, Miglioretti DL, Webber WRS, Bare M, Cysyk B, Krauss G, Gordon B. Brief bursts of pulse stimulation terminate after discharges caused by cortical stimulation. Neurology. 1999;53(9):2073–2073. doi: 10.1212/wnl.53.9.2073. [DOI] [PubMed] [Google Scholar]
  • 79.Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO. Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinsons disease. Brain. 2002;125(6):1196–1209. doi: 10.1093/brain/awf128. [DOI] [PubMed] [Google Scholar]
  • 80.Liew S, Santarnecchi E, Buch E, Cohen L. Noninvasive brain stimulation in neurorehabilitation: Local and distant effects for motor recovery. Front Human Neurosci. 2014;8:378. doi: 10.3389/fnhum.2014.00378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Little S, Brown P. What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? Ann N Y Acad Sci. 2012;1265(1):9–24. doi: 10.1111/j.1749-6632.2012.06650.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Lucas TH, Fetz EE. Myo-cortical crossed feedback reorganizes primate motor cortex output. J Neurosci. 2013;33(12):5261–5274. doi: 10.1523/JNEUROSCI.4683-12.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Mavoori J, Jackson A, Diorio C, Fetz E. An autonomous implantable computer for neural recording and stimulation in unrestrained primates. J Neurosci Methods. 2005;148(1):71–77. doi: 10.1016/j.jneumeth.2005.04.017. [DOI] [PubMed] [Google Scholar]
  • 84.Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651–660. doi: 10.1016/j.neuron.2005.02.014. [DOI] [PubMed] [Google Scholar]
  • 85.Moritz CT, Perlmutter SI, Fetz EE. Direct control of paralysed muscles by cortical neurons. Nature. 2008;456(7222):639–642. doi: 10.1038/nature07418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Morrell MJ. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011;77(13):1295–1304. doi: 10.1212/WNL.0b013e3182302056. [DOI] [PubMed] [Google Scholar]
  • 87.Morris GL, Gloss D, Buchhalter J, Mack KJ, Nickels K, Harden C. Evidence-based guideline update: Vagus nerve stimulation for the treatment of epilepsy report of the guideline development subcommittee of the american academy of neurology. Neurology. 2013;81(16):1453–1459. doi: 10.1212/WNL.0b013e3182a393d1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Muller R, Gambini S, Rabaey J. A 0.013 mm2 5 μW DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J Solid State Circuits. 2012;47(1):232–243. [Google Scholar]
  • 89.Nag S, Thakor NV. Implantable neurotechnologies: electrical stimulation and applications. Med Biol Eng Comput. 2016;54(1) doi: 10.1007/s11517-015-1442-0. [DOI] [PubMed] [Google Scholar]
  • 90.Neuropace Inc. RNS System User Manual. 2015 http://www.neuropace.com/wp-content/uploads/2015/11/UserManual.pdf.
  • 91.Newman JP, Zeller-Townson R, Fong Mf, Arcot Desai S, Gross RE, Potter SM. Closed-loop, multichannel experimentation using the open-source neurorighter electrophysiology platform. Front Neural Circuits. 2013;6(98):1–18. doi: 10.3389/fncir.2012.00098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Ng KA, Greenwald E, Xu YP, Thakor NV. Implantable neurotechnologies: a review of integrated circuit neural amplifiers. Med Biol Eng Comput. 2016;54(1) doi: 10.1007/s11517-015-1431-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Nishimura Y, Perlmutter SI, Eaton RW, Fetz EE. Spike-timing-dependent plasticity in primate corticospinal connections induced during free behavior. Neuron. 2013;80(5):1301–1309. doi: 10.1016/j.neuron.2013.08.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Nishimura Y, Perlmutter SI, Fetz EE. Restoration of upper limb movement via artificial corticospinal and musculospinal connections in a monkey with spinal cord injury. Front Neural Circuits. 2013;7(57):1–9. doi: 10.3389/fncir.2013.00057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Nitsche MA, Paulus W. Transcranial direct current stimulation-update 2011. Restor Neurol Neurosci. 2011;29(6):463–492. doi: 10.3233/RNN-2011-0618. [DOI] [PubMed] [Google Scholar]
  • 96.Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–1794. doi: 10.1126/science.272.5269.1791. [DOI] [PubMed] [Google Scholar]
  • 97.Nuttin B, Cosyns P, Demeulemeester H, Gybels J, Meyerson B. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet. 1999;354(9189):1526. doi: 10.1016/S0140-6736(99)02376-4. [DOI] [PubMed] [Google Scholar]
  • 98.Ochoa J, Torebjörk E. Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J Physiol. 1983;342(1):633–654. doi: 10.1113/jphysiol.1983.sp014873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.O’Doherty JE, Lebedev MA, Hanson TL, Fitzsimmons NA, Nicolelis MA. A brain-machine interface instructed by direct intracortical microstimulation. Front Integr Neurosci. 2009;3(20):1–10. doi: 10.3389/neuro.07.020.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, Nicolelis MAL. Active tactile exploration using a brain-machine-brain interface. Nature. 2011;479(7372):228–231. doi: 10.1038/nature10489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Opris I, Fuqua JL, Huettl PF, Gerhardt GA, Berger TW, Hampson RE, Deadwyler SA. Closing the loop in primate prefrontal cortex: Inter-laminar processing. Front Neural Circuits. 2012;6(88):1–13. doi: 10.3389/fncir.2012.00088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Parthasarathy AB, Fox DJ, Dunn AK, Weber EL, Richards LM. Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study. J Biomed Opt. 2010;15(6):066030–066030. doi: 10.1117/1.3526368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Patil AC, Thakor NV. Implantable neurotechnologies: a review of micro and nano-electrodes for neural recording. Med Biol Eng Comput. 2016;54(1) doi: 10.1007/s11517-015-1430-4. [DOI] [PubMed] [Google Scholar]
  • 104.Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, Deisseroth K, Huguenard JR. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci. 2013;16(1):64–70. doi: 10.1038/nn.3269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Plow EB, Carey JR, Nudo RJ, Pascual-Leone A. Invasive cortical stimulation to promote recovery of function after stroke a critical appraisal. Stroke. 2009;40(5):1926–1931. doi: 10.1161/STROKEAHA.108.540823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Polasek KH, Hoyen HA, Keith MW, Kirsch RF, Tyler DJ. Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity. IEEE Trans Neural Syst Rehabil Eng. 2009;17(5):428–437. doi: 10.1109/TNSRE.2009.2032603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Pons T, Garraghty P, Ommaya A, Kaas J, Taub E, Mishkin M. Massive cortical reorganization after sensory deafferentation in adult macaques. Science. 1991;252(5014):1857–1860. doi: 10.1126/science.1843843. [DOI] [PubMed] [Google Scholar]
  • 108.Priori A, Foffani G, Pesenti A, Tamma F, Bianchi A, Pellegrini M, Locatelli M, Moxon K, Villani R. Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp Neurol. 2004;189(2):369–379. doi: 10.1016/j.expneurol.2004.06.001. [DOI] [PubMed] [Google Scholar]
  • 109.Priori A, Foffani G, Rossi L, Marceglia S. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp Neurol. 2013;245:77–86. doi: 10.1016/j.expneurol.2012.09.013. [DOI] [PubMed] [Google Scholar]
  • 110.Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, Carpaneto J, Controzzi M, Boretius T, Fernandez E, et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med. 2014;6(222):222ra19–222ra19. doi: 10.1126/scitranslmed.3006820. [DOI] [PubMed] [Google Scholar]
  • 111.Rebesco JM, Stevenson IH, Körding KP, Solla SA, Miller LE. Rewiring neural interactions by micro-stimulation. Front Syst Neurosci. 2010;4(39):1–15. doi: 10.3389/fnsys.2010.00039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Reger BD, Fleming KM, Sanguineti V, Alford S, Mussa-Ivaldi FA. Connecting brains to robots: an artificial body for studying the computational properties of neural tissues. Artif Life. 2000;6(4):307–324. doi: 10.1162/106454600300103656. [DOI] [PubMed] [Google Scholar]
  • 113.Rhew HG, Jeong J, Fredenburg J, Dodani S, Patil P, Flynn M. A fully self-contained logarithmic closed-loop deep brain stimulation SoC with wireless telemetry and wireless power management. IEEE J Solid State Circuits. 2014;99:1–15. [Google Scholar]
  • 114.Romo R, Hernndez A, Zainos A, Brody CD, Lemus L. Sensing without touching: Psychophysical performance based on cortical microstimulation. Neuron. 2000;26(1):273–278. doi: 10.1016/s0896-6273(00)81156-3. [DOI] [PubMed] [Google Scholar]
  • 115.Romo R, Hernndez A, Zainos A, Salinas E. Somatosensory discrimination based on cortical microstimulation. Nature. 1998;392:387. doi: 10.1038/32891. [DOI] [PubMed] [Google Scholar]
  • 116.Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, Vaadia E, Bergman H. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72(2):370–384. doi: 10.1016/j.neuron.2011.08.023. [DOI] [PubMed] [Google Scholar]
  • 117.Rossini PM, Micera S, Benvenuto A, Carpaneto J, Cavallo G, Citi L, Cipriani C, Denaro L, Denaro V, Pino GD, Ferreri F, Guglielmelli E, Hoffmann KP, Raspopovic S, Rigosa J, Rossini L, Tombini M, Dario P. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol. 2010;121(5):777–783. doi: 10.1016/j.clinph.2010.01.001. [DOI] [PubMed] [Google Scholar]
  • 118.Rouse AG, Stanslaski SR, Cong P, Jensen RM, Afshar P, Ullestad D, Gupta R, Molnar GF, Moran DW, Denison TJ. A chronic generalized bi-directional brain machine interface. J Neural Eng. 2011;8(3):036018. doi: 10.1088/1741-2560/8/3/036018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Sainburg RL, Ghilardi MF, Poizner H, Ghez C. Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol. 1995;73(2):820–835. doi: 10.1152/jn.1995.73.2.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Sasada S, Kato K, Kadowaki S, Groiss SJ, Ugawa Y, Komiyama T, Nishimura Y. Volitional walking via upper limb muscle-controlled stimulation of the lumbar locomotor center in man. J Neurosci. 2014;34(33):11131–11142. doi: 10.1523/JNEUROSCI.4674-13.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Schiefer MA, Freeberg M, Pinault GJC, Anderson J, Hoyen H, Tyler DJ, Triolo RJ. Selective activation of the human tibial and common peroneal nerves with a flat interface nerve electrode. J Neural Eng. 2013;10(5):056006. doi: 10.1088/1741-2560/10/5/056006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Schwartz AB, Cui XT, Weber DJ, Moran DW. Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron. 2006;52(1):205–220. doi: 10.1016/j.neuron.2006.09.019. [DOI] [PubMed] [Google Scholar]
  • 123.Sherman DL, Tsai YC, Rossell LA, Mirski MA, Thakor NV. Spectral analysis of a thalamus-to-cortex seizure pathway. IEEE Trans Biomed Eng. 1997;44(8):657–664. doi: 10.1109/10.605422. [DOI] [PubMed] [Google Scholar]
  • 124.Silberstein P, Pogosyan A, Kühn AA, Hotton G, Tisch S, Kupsch A, Dowsey-Limousin P, Hariz MI, Brown P. Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain. 2005;128(6):1277–1291. doi: 10.1093/brain/awh480. [DOI] [PubMed] [Google Scholar]
  • 125.Song W, Kerr CC, Lytton WW, Francis JT. Cortical plasticity induced by spike-triggered microstimulation in primate somatosensory cortex. PloS one. 2013;8(3):e57453. doi: 10.1371/journal.pone.0057453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Stanslaski S, Afshar P, Cong P, Giftakis J, Stypulkowski P, Carlson D, Linde D, Ullestad D, Avestruz AT, Denison T. Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans Neural Syst Rehabil Eng. 2012;20(4):410–421. doi: 10.1109/TNSRE.2012.2183617. [DOI] [PubMed] [Google Scholar]
  • 127.Stewart JD. Peripheral nerve fascicles: Anatomy and clinical relevance. Muscle Nerve. 2003;28(5):525–541. doi: 10.1002/mus.10454. [DOI] [PubMed] [Google Scholar]
  • 128.Suminski AJ, Tkach DC, Fagg AH, Hatsopoulos NG. Incorporating feedback from multiple sensory modalities enhances brain machine interface control. J Neurosci. 2010;30(50):16777–16787. doi: 10.1523/JNEUROSCI.3967-10.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Tabot GA, Dammann JF, Berg JA, Tenore FV, Boback JL, Vogelstein RJ, Bensmaia SJ. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci. 2013;110(45):18279–18284. doi: 10.1073/pnas.1221113110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Tan D, Schiefer M, Keith MW, Anderson R, Tyler DJ. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in a human amputee. 2013 6th international IEEE/EMBS conference on neural engineering (NER) 2013:859–862. doi: 10.1088/1741-2560/12/2/026002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch perception. Sci Transl Med. 2014;6(257):257ra138. doi: 10.1126/scitranslmed.3008669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Tessadori J, Bisio M, Martinoia S, Chiappalone M. Modular neuronal assemblies embodied in a closed-loop environment: towards future integration of brains and machines. Front Neural Circuits. 2012;6(99):1–16. doi: 10.3389/fncir.2012.00099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Tyler DJ, Durand DM. Chronic response of the rat sciatic nerve to the flat interface nerve electrode. Ann Biomed Eng. 2003;31(6):633–642. doi: 10.1114/1.1569263. [DOI] [PubMed] [Google Scholar]
  • 134.Vagus Nerve Stimulation Study Group. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology. 1995;45:224–230. doi: 10.1212/wnl.45.2.224. [DOI] [PubMed] [Google Scholar]
  • 135.Verma N, Shoeb A, Bohorquez J, Dawson J, Guttag J, Chandrakasan A. A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J Solid State Circuits. 2010;45(4):804–816. [Google Scholar]
  • 136.Volkmann J, Moro E, Pahwa R. Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov Disord. 2006;21(S14):S284–S289. doi: 10.1002/mds.20961. [DOI] [PubMed] [Google Scholar]
  • 137.Weber DJ, Friesen R, Miller LE. Interfacing the somatosensory system to restore touch and proprioception: Essential considerations. J Motor Behav. 2012;44(6):403–418. doi: 10.1080/00222895.2012.735283. [DOI] [PubMed] [Google Scholar]
  • 138.Wise KD, Sodagar AM, Yao Y, Gulari MN, Perlin GE, Najafi K. Microelectrodes, microelectronics, and implantable neural microsystems. Proc IEEE. 2008;96(7):1184–1202. [Google Scholar]
  • 139.Yoo J, Yan L, El-Damak D, Altaf M, Shoeb A, Chandrakasan A. An 8-channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor. IEEE J Solid State Circuits. 2013;48(1):214–228. [Google Scholar]
  • 140.Zanos S, Richardson A, Shupe L, Miles F, Fetz E. The neurochip-2: An autonomous head-fixed computer for recording and stimulating in freely behaving monkeys. IEEE Trans Neural Syst Rehabil Eng. 2011;19(4):427–435. doi: 10.1109/TNSRE.2011.2158007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Zhang F, Mishra A, Richardson A, Otis B. A low-power ECoG/EEG processing IC with integrated multiband energy extractor. IEEE Trans Circuits Systems I Regular Papers. 2011;58(9):2069–2082. [Google Scholar]
  • 142.Zhang Y, Zhang F, Shakhsheer Y, Silver J, Klinefelter A, Nagaraju M, Boley J, Pandey J, Shrivastava A, Carlson E, Wood A, Calhoun B, Otis B. A batteryless 19 μW MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE J Solid State Circuits. 2013;48(1):199–213. [Google Scholar]

RESOURCES