Skip to main content
Journal of Clinical Pathology logoLink to Journal of Clinical Pathology
. 1992 Feb;45(2):114–119. doi: 10.1136/jcp.45.2.114

Simultaneous in situ hybridisation of native mRNA and immunoglobulin detection by conventional immunofluorescence in paraffin wax embedded sections.

S J Harper 1, J H Pringle 1, A Gillies 1, A C Allen 1, L Layward 1, J Feehally 1, I Lauder 1
PMCID: PMC495648  PMID: 1541690

Abstract

AIMS: The development of a technique for simultaneous in situ hybridisation for native mRNA and conventional immunofluorescence for cytoplasmic antigens in routine pathology specimens. METHODS: Cocktails of synthetic deoxyoligonucleotides coding for immunoglobulin J chain and kappa light chain were 3' end labelled enzymatically with digoxigenin using terminal deoxynucleotidyl transferase. Native mRNA sequences were "unmasked" using proteolytic digestion with proteinase K and hybrid detection was achieved with an alkaline phosphatase labelled anti-digoxigenin antibody. Alkaline phosphatase was visualised with Fast red/naphthol AS-MX phosphate. Fluorescein isothiocyanate (FITC) conjugated anti-isotype antibodies were used simultaneously at the detection stage to identify the isotype production by individual plasma cells in endoscopic duodenal biopsy specimens. RESULTS: The IgA plasma cells of the lamina propria were identified by immunofluorescence and hybrids were detected in the anticipated plasma cell population by Fast red visualisation. The reaction product was visible in bright field or ultraviolet illumination which allowed FITC and Fast red labels to be visualised together under ultraviolet light at 490 nm. Dual labelled cells were clearly visible. Morphology was well preserved throughout. CONCLUSIONS: This technique permits the demonstration of specific mRNA species in cells expressing immunoglobulin. It combines all the advantages of non-radioactive synthetic oligonucleotide probes and conventional immunofluorescence techniques in routine formol-saline fixed and paraffin wax embedded sections with good retention of morphology.

Full text

PDF
114

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakkus M. H., Brakel-van Peer K. M., Adriaansen H. J., Wierenga-Wolf A. F., van den Akker T. W., Dicke-Evinger M. J., Benner R. Detection of oncogene expression by fluorescent in situ hybridization in combination with immunofluorescent staining of cell surface markers. Oncogene. 1989 Oct;4(10):1255–1262. [PubMed] [Google Scholar]
  2. Bayer J. A., De Vries P., Herweijer H., Bauman J. G. The use of E. coli exonuclease III to generate single stranded DNA in BrdUrd cell-cycle analysis permits simultaneous detection of cell surface antigens. J Immunol Methods. 1990 Aug 28;132(1):13–24. doi: 10.1016/0022-1759(90)90393-a. [DOI] [PubMed] [Google Scholar]
  3. Bjerke K., Brandtzaeg P. Terminally differentiated human intestinal B cells. J chain expression of IgA and IgG subclass-producing immunocytes in the distal ileum compared with mesenteric and peripheral lymph nodes. Clin Exp Immunol. 1990 Nov;82(2):411–415. doi: 10.1111/j.1365-2249.1990.tb05462.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brahic M., Haase A. T., Cash E. Simultaneous in situ detection of viral RNA and antigens. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5445–5448. doi: 10.1073/pnas.81.17.5445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coghlan J. P., Aldred P., Haralambidis J., Niall H. D., Penschow J. D., Tregear G. W. Hybridization histochemistry. Anal Biochem. 1985 Aug 15;149(1):1–28. doi: 10.1016/0003-2697(85)90472-5. [DOI] [PubMed] [Google Scholar]
  6. Cox K. H., DeLeon D. V., Angerer L. M., Angerer R. C. Detection of mrnas in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol. 1984 Feb;101(2):485–502. doi: 10.1016/0012-1606(84)90162-3. [DOI] [PubMed] [Google Scholar]
  7. Hedrick S. M., Nielsen E. A., Kavaler J., Cohen D. I., Davis M. M. Sequence relationships between putative T-cell receptor polypeptides and immunoglobulins. Nature. 1984 Mar 8;308(5955):153–158. doi: 10.1038/308153a0. [DOI] [PubMed] [Google Scholar]
  8. Hené R. J., Schuurman H. J., Kater L. Immunoglobulin A subclass-containing plasma cells in the jejunum in primary IgA nephropathy and in Henoch-Schönlein purpura. Nephron. 1988;48(1):4–7. doi: 10.1159/000184859. [DOI] [PubMed] [Google Scholar]
  9. Hieter P. A., Max E. E., Seidman J. G., Maizel J. V., Jr, Leder P. Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments. Cell. 1980 Nov;22(1 Pt 1):197–207. doi: 10.1016/0092-8674(80)90168-3. [DOI] [PubMed] [Google Scholar]
  10. Lawrence J. B., Singer R. H. Quantitative analysis of in situ hybridization methods for the detection of actin gene expression. Nucleic Acids Res. 1985 Mar 11;13(5):1777–1799. doi: 10.1093/nar/13.5.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Max E. E., Korsmeyer S. J. Human J chain gene. Structure and expression in B lymphoid cells. J Exp Med. 1985 Apr 1;161(4):832–849. doi: 10.1084/jem.161.4.832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McQuaid S., Isserte S., Allan G. M., Taylor M. J., Allen I. V., Cosby S. L. Use of immunocytochemistry and biotinylated in situ hybridisation for detecting measles virus in central nervous system tissue. J Clin Pathol. 1990 Apr;43(4):329–333. doi: 10.1136/jcp.43.4.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Murdoch A., Jenkinson E. J., Johnson G. D., Owen J. J. Alkaline phosphatase-fast red, a new fluorescent label. Application in double labelling for cell cycle analysis. J Immunol Methods. 1990 Aug 28;132(1):45–49. doi: 10.1016/0022-1759(90)90396-d. [DOI] [PubMed] [Google Scholar]
  14. Nederlof P. M., Robinson D., Abuknesha R., Wiegant J., Hopman A. H., Tanke H. J., Raap A. K. Three-color fluorescence in situ hybridization for the simultaneous detection of multiple nucleic acid sequences. Cytometry. 1989 Jan;10(1):20–27. doi: 10.1002/cyto.990100105. [DOI] [PubMed] [Google Scholar]
  15. Porter H. J., Heryet A., Quantrill A. M., Fleming K. A. Combined non-isotopic in situ hybridisation and immunohistochemistry on routine paraffin wax embedded tissue: identification of cell type infected by human parvovirus and demonstration of cytomegalovirus DNA and antigen in renal infection. J Clin Pathol. 1990 Feb;43(2):129–132. doi: 10.1136/jcp.43.2.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pringle J. H., Primrose L., Kind C. N., Talbot I. C., Lauder I. In situ hybridization demonstration of poly-adenylated RNA sequences in formalin-fixed paraffin sections using a biotinylated oligonucleotide poly d(T) probe. J Pathol. 1989 Aug;158(4):279–286. doi: 10.1002/path.1711580403. [DOI] [PubMed] [Google Scholar]
  17. Pringle J. H., Ruprai A. K., Primrose L., Keyte J., Potter L., Close P., Lauder I. In situ hybridization of immunoglobulin light chain mRNA in paraffin sections using biotinylated or hapten-labelled oligonucleotide probes. J Pathol. 1990 Nov;162(3):197–207. doi: 10.1002/path.1711620305. [DOI] [PubMed] [Google Scholar]
  18. Shivers B. D., Harlan R. E., Pfaff D. W., Schachter B. S. Combination of immunocytochemistry and in situ hybridization in the same tissue section of rat pituitary. J Histochem Cytochem. 1986 Jan;34(1):39–43. doi: 10.1177/34.1.3510246. [DOI] [PubMed] [Google Scholar]
  19. Warford A., Lauder I. In situ hybridisation in perspective. J Clin Pathol. 1991 Mar;44(3):177–181. doi: 10.1136/jcp.44.3.177. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES