Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Aug 1;89(15):6673–6677. doi: 10.1073/pnas.89.15.6673

NADPH-dependent beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms.

T E Smeland 1, M Nada 1, D Cuebas 1, H Schulz 1
PMCID: PMC49565  PMID: 1495956

Abstract

The mitochondrial metabolism of 5-enoyl-CoAs, which are formed during the beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms, was studied with mitochondrial extracts and purified enzymes of beta-oxidation. Metabolites were identified spectrophotometrically and by high performance liquid chromatography. 5-cis-Octenoyl-CoA, a putative metabolite of linolenic acid, was efficiently dehydrogenated by medium-chain acyl-CoA dehydrogenase (EC 1.3.99.3) to 2-trans-5-cis-octadienoyl-CoA, which was isomerized to 3,5-octadienoyl-CoA either by mitochondrial delta 3,delta 2-enoyl-CoA isomerase (EC 5.3.3.8) or by peroxisomal trifunctional enzyme. Further isomerization of 3,5-octadienoyl-CoA to 2-trans-4-trans-octadienoyl-CoA in the presence of soluble extracts of either rat liver or rat heart mitochondria was observed and attributed to a delta 3,5,delta 2,4-dienoyl-CoA isomerase. Qualitatively similar results were obtained with 2-trans-5-trans-octadienoyl-CoA formed by dehydrogenation of 5-trans-octenoyl-CoA. 2-trans-4-trans-Octadienoyl-CoA was a substrate for NADPH-dependent 2,4-dienoyl-CoA reductase (EC 1.3.1.34). A soluble extract of rat liver mitochondria catalyzed the isomerization of 2-trans-5-cis-octadienoyl-CoA to 2-trans-4-trans-octadienoyl-CoA, which upon addition of NADPH, NAD+, and CoA was chain-shortened to hexanoyl-CoA, butyryl-CoA, and acetyl-CoA. Thus we conclude that odd-numbered double bonds, like even-numbered double bonds, can be reductively removed during the beta-oxidation of polyunsaturated fatty acids.

Full text

PDF
6673

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binstock J. F., Schulz H. Fatty acid oxidation complex from Escherichia coli. Methods Enzymol. 1981;71(Pt 100):403–411. doi: 10.1016/0076-6879(81)71051-6. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Cuebas D., Schulz H. Evidence for a modified pathway of linoleate degradation. Metabolism of 2,4-decadienoyl coenzyme A. J Biol Chem. 1982 Dec 10;257(23):14140–14144. [PubMed] [Google Scholar]
  4. Davidson B., Schulz H. Separation, properties, and regulation of acyl coenzyme A dehydrogenases from bovine heat and liver. Arch Biochem Biophys. 1982 Jan;213(1):155–162. doi: 10.1016/0003-9861(82)90450-7. [DOI] [PubMed] [Google Scholar]
  5. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  6. GOLDMAN P., VAGELOS P. R. The specificity of triglyceride synthesis from diglycerides in chicken adipose tissue. J Biol Chem. 1961 Oct;236:2620–2623. [PubMed] [Google Scholar]
  7. Hinsch W., Klages C., Seubert W. On the mechanism of malonyl-CoA-independent fatty-acid synthesis. Different properties of the mitochondrial chain elongation and enoylCoA reductase in various tissues. Eur J Biochem. 1976 Apr 15;64(1):45–55. doi: 10.1111/j.1432-1033.1976.tb10273.x. [DOI] [PubMed] [Google Scholar]
  8. Kilponen J. M., Palosaari P. M., Hiltunen J. K. Occurrence of a long-chain delta 3,delta 2-enoyl-CoA isomerase in rat liver. Biochem J. 1990 Jul 1;269(1):223–226. doi: 10.1042/bj2690223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kunau W. H., Dommes P. Degradation of unsaturated fatty acids. Identification of intermediates in the degradation of cis-4-decenoly-CoA by extracts of beef-liver mitochondria. Eur J Biochem. 1978 Nov 15;91(2):533–544. doi: 10.1111/j.1432-1033.1978.tb12707.x. [DOI] [PubMed] [Google Scholar]
  10. Osumi T., Hashimoto T. Acyl-CoA oxidase of rat liver: a new enzyme for fatty acid oxidation. Biochem Biophys Res Commun. 1978 Jul 28;83(2):479–485. doi: 10.1016/0006-291x(78)91015-x. [DOI] [PubMed] [Google Scholar]
  11. Palosaari P. M., Hiltunen J. K. Peroxisomal bifunctional protein from rat liver is a trifunctional enzyme possessing 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and delta 3, delta 2-enoyl-CoA isomerase activities. J Biol Chem. 1990 Feb 15;265(5):2446–2449. [PubMed] [Google Scholar]
  12. Schulz H. Beta oxidation of fatty acids. Biochim Biophys Acta. 1991 Jan 28;1081(2):109–120. doi: 10.1016/0005-2760(91)90015-a. [DOI] [PubMed] [Google Scholar]
  13. Staack H., Binstock J. F., Schulz H. Purification and properties of a pig heart thiolase with broad chain length specificity and comparison of thiolases from pig heart and Escherichia coli. J Biol Chem. 1978 Mar 25;253(6):1827–1831. [PubMed] [Google Scholar]
  14. Steinman H. M., Hill R. L. Bovine liver crotonase (enoyl coenzyme A hydratase). EC 4.2.1.17 L-3-hydroxyacyl-CoA hydrolyase. Methods Enzymol. 1975;35:136–151. doi: 10.1016/0076-6879(75)35149-5. [DOI] [PubMed] [Google Scholar]
  15. Stoffel W., Caesar H. Der Stoffwechsel der ungesättigten Fettsäuren. V. Zur beta-Oxydation der Mono- und Polyenfettsäuren. Der Mechanismus der enzymatischen Reaktionen an delta-2-cis-Enoyl-CoA-Verbindungen. Hoppe Seylers Z Physiol Chem. 1965;341(1):76–83. [PubMed] [Google Scholar]
  16. Tserng K. Y., Jin S. J. NADPH-dependent reductive metabolism of cis-5 unsaturated fatty acids. A revised pathway for the beta-oxidation of oleic acid. J Biol Chem. 1991 Jun 25;266(18):11614–11620. [PubMed] [Google Scholar]
  17. Wang H. Y., Schulz H. Beta-oxidation of polyunsaturated fatty acids with conjugated double bonds. Mitochondrial metabolism of octa-2,4,6-trienoic acid. Biochem J. 1989 Nov 15;264(1):47–52. doi: 10.1042/bj2640047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yang S. Y., Cuebas D., Schulz H. 3-Hydroxyacyl-CoA epimerases of rat liver peroxisomes and Escherichia coli function as auxiliary enzymes in the beta-oxidation of polyunsaturated fatty acids. J Biol Chem. 1986 Sep 15;261(26):12238–12243. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES