Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Aug 1;89(15):6798–6802. doi: 10.1073/pnas.89.15.6798

Presence of a member of the Tc1-like transposon family from nematodes and Drosophila within the vasotocin gene of a primitive vertebrate, the Pacific hagfish Eptatretus stouti.

J Heierhorst 1, K Lederis 1, D Richter 1
PMCID: PMC49591  PMID: 1379721

Abstract

Molecular cloning of the vasotocin gene of a cyclostome, the Pacific hagfish Eptatretus stouti, reveals, in contrast to other known members of the vertebrate vasopressin/oxytocin hormone gene family, an unusual exon-intron organization. Although the location of three exons and two introns is conserved, an additional intron is present 5' of the coding region of the hagfish gene. The third intron, which is greater than 14 kilobase pairs in size, contains on the opposite DNA strand to that encoding vasotocin an open reading frame exhibiting striking similarity to the putative transposase of Tc1-like nonretroviral mobile genetic DNA elements, so far reported only from nematodes and Drosophila. The hagfish element, called Tes1, is flanked by inverted terminal repeats representing an example of the existence of a typical inverted terminal-repeat transposon within vertebrates. The presence of Tc1-like elements in nematodes, Drosophila, and cyclostomes indicates that these genetic elements have a much broader phylogenetic distribution than hitherto expected.

Full text

PDF
6798

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acher R. Molecular evolution of biologically active polypeptides. Proc R Soc Lond B Biol Sci. 1980 Oct 29;210(1178):21–43. doi: 10.1098/rspb.1980.0116. [DOI] [PubMed] [Google Scholar]
  2. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brezinsky L., Wang G. V., Humphreys T., Hunt J. The transposable element Uhu from Hawaiian Drosophila--member of the widely dispersed class of Tc1-like transposons. Nucleic Acids Res. 1990 Apr 25;18(8):2053–2059. doi: 10.1093/nar/18.8.2053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burman S., Wellner D., Chait B., Chaudhary T., Breslow E. Complete assignment of neurophysin disulfides indicates pairing in two separate domains. Proc Natl Acad Sci U S A. 1989 Jan;86(2):429–433. doi: 10.1073/pnas.86.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Calvi B. R., Hong T. J., Findley S. D., Gelbart W. M. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell. 1991 Aug 9;66(3):465–471. doi: 10.1016/0092-8674(81)90010-6. [DOI] [PubMed] [Google Scholar]
  6. Chen L. Q., Rose J. P., Breslow E., Yang D., Chang W. R., Furey W. F., Jr, Sax M., Wang B. C. Crystal structure of a bovine neurophysin II dipeptide complex at 2.8 A determined from the single-wavelength anomalous scattering signal of an incorporated iodine atom. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4240–4244. doi: 10.1073/pnas.88.10.4240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  8. Fassina G., Chaiken I. M. Structural requirements of peptide hormone binding for peptide-potentiated self-association of bovine neurophysin II. J Biol Chem. 1988 Sep 25;263(27):13539–13543. [PubMed] [Google Scholar]
  9. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  10. Finnegan D. J. Transposable elements and DNA transposition in eukaryotes. Curr Opin Cell Biol. 1990 Jun;2(3):471–477. doi: 10.1016/0955-0674(90)90130-7. [DOI] [PubMed] [Google Scholar]
  11. Franz G., Savakis C. Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res. 1991 Dec 11;19(23):6646–6646. doi: 10.1093/nar/19.23.6646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gierl A., Frey M. Eukaryotic transposable elements with short terminal inverted repeats. Curr Opin Genet Dev. 1991 Dec;1(4):494–497. doi: 10.1016/s0959-437x(05)80197-2. [DOI] [PubMed] [Google Scholar]
  13. Grillner S., Wallén P., Brodin L., Lansner A. Neuronal network generating locomotor behavior in lamprey: circuitry, transmitters, membrane properties, and simulation. Annu Rev Neurosci. 1991;14:169–199. doi: 10.1146/annurev.ne.14.030191.001125. [DOI] [PubMed] [Google Scholar]
  14. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  15. Harris L. J., Baillie D. L., Rose A. M. Sequence identity between an inverted repeat family of transposable elements in Drosophila and Caenorhabditis. Nucleic Acids Res. 1988 Jul 11;16(13):5991–5998. doi: 10.1093/nar/16.13.5991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heierhorst J., Mahlmann S., Morley S. D., Coe I. R., Sherwood N. M., Richter D. Molecular cloning of two distinct vasotocin precursor cDNAs from chum salmon (Oncorhynchus keta) suggests an ancient gene duplication. FEBS Lett. 1990 Jan 29;260(2):301–304. doi: 10.1016/0014-5793(90)80129-7. [DOI] [PubMed] [Google Scholar]
  17. Heierhorst J., Morley S. D., Figueroa J., Krentler C., Lederis K., Richter D. Vasotocin and isotocin precursors from the white sucker, Catostomus commersoni: cloning and sequence analysis of the cDNAs. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5242–5246. doi: 10.1073/pnas.86.14.5242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Henikoff S., Plasterk R. H. Related transposons in C.elegans and D.melanogaster. Nucleic Acids Res. 1988 Jul 11;16(13):6234–6234. doi: 10.1093/nar/16.13.6234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morley S. D., Schönrock C., Heierhorst J., Figueroa J., Lederis K., Richter D. Vasotocin genes of the teleost fish Catostomus commersoni: gene structure, exon-intron boundary, and hormone precursor organization. Biochemistry. 1990 Mar 13;29(10):2506–2511. doi: 10.1021/bi00462a011. [DOI] [PubMed] [Google Scholar]
  20. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nieuwenhuys R. Topological analysis of the brain stem of the lamprey Lampetra fluviatilis. J Comp Neurol. 1972 Jun;145(2):165–177. doi: 10.1002/cne.901450204. [DOI] [PubMed] [Google Scholar]
  22. Nojiri H., Ishida I., Miyashita E., Sato M., Urano A., Deguchi T. Cloning and sequence analysis of cDNAs for neurohypophysial hormones vasotocin and mesotocin for the hypothalamus of toad, Bufo japonicus. Proc Natl Acad Sci U S A. 1987 May;84(9):3043–3046. doi: 10.1073/pnas.84.9.3043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rosenzweig B., Liao L. W., Hirsh D. Sequence of the C. elegans transposable element Tc1. Nucleic Acids Res. 1983 Jun 25;11(12):4201–4209. doi: 10.1093/nar/11.12.4201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 1988 Aug 11;16(15):7583–7600. doi: 10.1093/nar/16.15.7583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Simonelig M., Anxolabéhère D. A P element of Scaptomyza pallida is active in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6102–6106. doi: 10.1073/pnas.88.14.6102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wood W. I., Gitschier J., Lasky L. A., Lawn R. M. Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1585–1588. doi: 10.1073/pnas.82.6.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES