Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Aug 1;89(15):6803–6807. doi: 10.1073/pnas.89.15.6803

Entropic stabilization of a mutant human lysozyme induced by calcium binding.

R Kuroki 1, S Kawakita 1, H Nakamura 1, K Yutani 1
PMCID: PMC49592  PMID: 1495968

Abstract

The stabilization mechanism of the mutant human lysozyme with a calcium binding site (D86/92) was investigated by using calorimetric approaches. By differential scanning calorimetry, the enthalpy change (delta H) in the unfolding of holo-D86/92 was found to be 6.8 kcal/mol smaller than that of the wild-type and apo-D86/92 lysozymes at 85 degrees C. However, the unfolding Gibbs energy change (delta G) of the holo mutant was 3.3 kcal/mol greater than the apo type at 85 degrees C, indicating a significant decrease of entropy (T delta S = 10.1 kcal/mol) in the presence of Ca2+. Subsequently, the Ca2+ binding process in the folded state of the mutant was analyzed by using titration isothermal calorimetry. The binding enthalpy change was estimated to be 4.5 kcal/mol, and delta G was -8.1 kcal/mol at 85 degrees C, which indicates that the binding was caused by a large increase in entropy (T delta S = 12.6 kcal/mol). From these analyses, the unfolded holo mutant was determined to bind Ca2+ with a binding delta G of -4.8 kcal/mol (delta H = -2.6 kcal/mol, T delta S = 2.2 kcal/mol) at 85 degrees C. Therefore, the major cause of stabilization of holo-D86/92 is the decrease in entropy of the peptide chain due to Ca2+ binding to the unfolded protein.

Full text

PDF
6803

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Doig A. J., Williams D. H. Is the hydrophobic effect stabilizing or destabilizing in proteins? The contribution of disulphide bonds to protein stability. J Mol Biol. 1991 Jan 20;217(2):389–398. doi: 10.1016/0022-2836(91)90551-g. [DOI] [PubMed] [Google Scholar]
  2. Fukada H., Sturtevant J. M., Quiocho F. A. Thermodynamics of the binding of L-arabinose and of D-galactose to the L-arabinose-binding protein of Escherichia coli. J Biol Chem. 1983 Nov 10;258(21):13193–13198. [PubMed] [Google Scholar]
  3. Goldberg A. L., St John A. C. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem. 1976;45:747–803. doi: 10.1146/annurev.bi.45.070176.003531. [DOI] [PubMed] [Google Scholar]
  4. Inaka K., Kuroki R., Kikuchi M., Matsushima M. Crystal structures of the apo- and holomutant human lysozymes with an introduced Ca2+ binding site. J Biol Chem. 1991 Nov 5;266(31):20666–20671. [PubMed] [Google Scholar]
  5. Inaka K., Taniyama Y., Kikuchi M., Morikawa K., Matsushima M. The crystal structure of a mutant human lysozyme C77/95A with increased secretion efficiency in yeast. J Biol Chem. 1991 Jul 5;266(19):12599–12603. [PubMed] [Google Scholar]
  6. Kuroki R., Taniyama Y., Seko C., Nakamura H., Kikuchi M., Ikehara M. Design and creation of a Ca2+ binding site in human lysozyme to enhance structural stability. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6903–6907. doi: 10.1073/pnas.86.18.6903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pace C. N., McGrath T. Substrate stabilization of lysozyme to thermal and guanidine hydrochloride denaturation. J Biol Chem. 1980 May 10;255(9):3862–3865. [PubMed] [Google Scholar]
  8. Parry R. M., Jr, Chandan R. C., Shahani K. M. Isolation and characterization of human milk lysozyme. Arch Biochem Biophys. 1969 Mar;130(1):59–65. doi: 10.1016/0003-9861(69)90009-5. [DOI] [PubMed] [Google Scholar]
  9. Privalov P. L., Khechinashvili N. N. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol. 1974 Jul 5;86(3):665–684. doi: 10.1016/0022-2836(74)90188-0. [DOI] [PubMed] [Google Scholar]
  10. Reid R. E., Gariépy J., Saund A. K., Hodges R. S. Calcium-induced protein folding. Structure-affinity relationships in synthetic analogs of the helix-loop-helix calcium binding unit. J Biol Chem. 1981 Mar 25;256(6):2742–2751. [PubMed] [Google Scholar]
  11. Ross P. D., Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry. 1981 May 26;20(11):3096–3102. doi: 10.1021/bi00514a017. [DOI] [PubMed] [Google Scholar]
  12. Segawa S., Sugihara M., Maeda T., Mitsuhisa Y., Kodama M., Seki S., Sakiyama M. Calorimetric study of the effect of intrachain cross-linking on lysozyme unfolding. Biopolymers. 1989 Jun;28(6):1033–1041. doi: 10.1002/bip.360280602. [DOI] [PubMed] [Google Scholar]
  13. Sturtevant J. M. Heat capacity and entropy changes in processes involving proteins. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2236–2240. doi: 10.1073/pnas.74.6.2236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tufty R. M., Kretsinger R. H. Troponin and parvalbumin calcium binding regions predicted in myosin light chain and T4 lysozyme. Science. 1975 Jan 17;187(4172):167–169. doi: 10.1126/science.1111094. [DOI] [PubMed] [Google Scholar]
  15. Von Hippel P. H., Wong K. Y. On the conformational stability of globular proteins. The effects of various electrolytes and nonelectrolytes on the thermal ribonuclease transition. J Biol Chem. 1965 Oct;240(10):3909–3923. [PubMed] [Google Scholar]
  16. Wiseman T., Williston S., Brandts J. F., Lin L. N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 1989 May 15;179(1):131–137. doi: 10.1016/0003-2697(89)90213-3. [DOI] [PubMed] [Google Scholar]
  17. Yutani K., Hayashi S., Sugisaki Y., Ogasahara K. Role of conserved proline residues in stabilizing tryptophan synthase alpha subunit: analysis by mutants with alanine or glycine. Proteins. 1991;9(2):90–98. doi: 10.1002/prot.340090203. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES