Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Aug 1;89(15):6818–6822. doi: 10.1073/pnas.89.15.6818

Song presentation induces gene expression in the songbird forebrain.

C V Mello 1, D S Vicario 1, D F Clayton 1
PMCID: PMC49595  PMID: 1495970

Abstract

We investigated the participation of genomic regulatory events in the response of the songbird brain to a natural auditory stimulus of known physiological and behavioral relevance, birdsong. Using in situ hybridization, we detected a rapid increase in forebrain mRNA levels of an immediate-early gene encoding a transcriptional regulator (ZENK; also known as zif-268, egr-1, NGFI-A, or Krox-24) following presentation of tape-recorded songs to canaries (Serinus canaria) and zebra finches (Taeniopygia guttata). ZENK induction is most marked in a forebrain region believed to participate in auditory processing and is greatest when birds hear the song of their own species. A significantly lower level of induction occurs when birds hear the song of a different species and no induction is seen after exposure to tone bursts. Cellular analysis indicates that the level of induction reflects the proportion of neurons recruited to express the gene. These results suggest a role for genomic responses in neural processes linked to song pattern recognition, discrimination, or the formation of auditory associations.

Full text

PDF
6818

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez-Buylla A., Kirn J. R., Nottebohm F. Birth of projection neurons in adult avian brain may be related to perceptual or motor learning. Science. 1990 Sep 21;249(4975):1444–1446. doi: 10.1126/science.1698312. [DOI] [PubMed] [Google Scholar]
  2. Bartel D. P., Sheng M., Lau L. F., Greenberg M. E. Growth factors and membrane depolarization activate distinct programs of early response gene expression: dissociation of fos and jun induction. Genes Dev. 1989 Mar;3(3):304–313. doi: 10.1101/gad.3.3.304. [DOI] [PubMed] [Google Scholar]
  3. Christy B. A., Lau L. F., Nathans D. A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with "zinc finger" sequences. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7857–7861. doi: 10.1073/pnas.85.21.7857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christy B., Nathans D. DNA binding site of the growth factor-inducible protein Zif268. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8737–8741. doi: 10.1073/pnas.86.22.8737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clayton D. F., Huecas M. E., Sinclair-Thompson E. Y., Nastiuk K. L., Nottebohm F. Probes for rare mRNAs reveal distributed cell subsets in canary brain. Neuron. 1988 May;1(3):249–261. doi: 10.1016/0896-6273(88)90146-8. [DOI] [PubMed] [Google Scholar]
  6. Cole A. J., Saffen D. W., Baraban J. M., Worley P. F. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature. 1989 Aug 10;340(6233):474–476. doi: 10.1038/340474a0. [DOI] [PubMed] [Google Scholar]
  7. Dragunow M., Robertson H. A. Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature. 1987 Oct 1;329(6138):441–442. doi: 10.1038/329441a0. [DOI] [PubMed] [Google Scholar]
  8. Goelet P., Castellucci V. F., Schacher S., Kandel E. R. The long and the short of long-term memory--a molecular framework. 1986 Jul 31-Aug 6Nature. 322(6078):419–422. doi: 10.1038/322419a0. [DOI] [PubMed] [Google Scholar]
  9. Hunt S. P., Pini A., Evan G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature. 1987 Aug 13;328(6131):632–634. doi: 10.1038/328632a0. [DOI] [PubMed] [Google Scholar]
  10. Karten H. J. The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res. 1968 Oct;11(1):134–153. doi: 10.1016/0006-8993(68)90078-4. [DOI] [PubMed] [Google Scholar]
  11. Kelley D. B., Nottebohm F. Projections of a telencephalic auditory nucleus-field L-in the canary. J Comp Neurol. 1979 Feb 1;183(3):455–469. doi: 10.1002/cne.901830302. [DOI] [PubMed] [Google Scholar]
  12. Konishi M., Akutagawa E. Neuronal growth, atrophy and death in a sexually dimorphic song nucleus in the zebra finch brain. Nature. 1985 May 9;315(6015):145–147. doi: 10.1038/315145a0. [DOI] [PubMed] [Google Scholar]
  13. Konishi M. Birdsong for neurobiologists. Neuron. 1989 Nov;3(5):541–549. doi: 10.1016/0896-6273(89)90264-x. [DOI] [PubMed] [Google Scholar]
  14. Kroodsma D. E. Reproductive development in a female songbird: differential stimulation by quality of male song. Science. 1976 May 7;192(4239):574–575. doi: 10.1126/science.192.4239.574. [DOI] [PubMed] [Google Scholar]
  15. Lemaire P., Revelant O., Bravo R., Charnay P. Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4691–4695. doi: 10.1073/pnas.85.13.4691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Margoliash D. Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow. J Neurosci. 1983 May;3(5):1039–1057. doi: 10.1523/JNEUROSCI.03-05-01039.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Margoliash D. Preference for autogenous song by auditory neurons in a song system nucleus of the white-crowned sparrow. J Neurosci. 1986 Jun;6(6):1643–1661. doi: 10.1523/JNEUROSCI.06-06-01643.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Marler P., Peters S. Selective vocal learning in a sparrow. Science. 1977 Nov 4;198(4316):519–521. doi: 10.1126/science.198.4316.519. [DOI] [PubMed] [Google Scholar]
  19. Milbrandt J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science. 1987 Nov 6;238(4828):797–799. doi: 10.1126/science.3672127. [DOI] [PubMed] [Google Scholar]
  20. Müller C. M. Differential effects of acetylcholine in the chicken auditory neostriatum and hyperstriatum ventrale--studies in vivo and in vitro. J Comp Physiol A. 1987 Nov;161(6):857–866. doi: 10.1007/BF00610227. [DOI] [PubMed] [Google Scholar]
  21. Müller C. M., Leppelsack H. J. Feature extraction and tonotopic organization in the avian auditory forebrain. Exp Brain Res. 1985;59(3):587–599. doi: 10.1007/BF00261351. [DOI] [PubMed] [Google Scholar]
  22. Nordeen K. W., Nordeen E. J. Projection neurons within a vocal motor pathway are born during song learning in zebra finches. Nature. 1988 Jul 14;334(6178):149–151. doi: 10.1038/334149a0. [DOI] [PubMed] [Google Scholar]
  23. Northcutt R. G. Evolution of the telencephalon in nonmammals. Annu Rev Neurosci. 1981;4:301–350. doi: 10.1146/annurev.ne.04.030181.001505. [DOI] [PubMed] [Google Scholar]
  24. Nottebohm F. A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain. Science. 1981 Dec 18;214(4527):1368–1370. doi: 10.1126/science.7313697. [DOI] [PubMed] [Google Scholar]
  25. Nottebohm F. From bird song to neurogenesis. Sci Am. 1989 Feb;260(2):74–79. doi: 10.1038/scientificamerican0289-74. [DOI] [PubMed] [Google Scholar]
  26. Nottebohm F., Kelley D. B., Paton J. A. Connections of vocal control nuclei in the canary telencephalon. J Comp Neurol. 1982 Jun 1;207(4):344–357. doi: 10.1002/cne.902070406. [DOI] [PubMed] [Google Scholar]
  27. Nottebohm F., Stokes T. M., Leonard C. M. Central control of song in the canary, Serinus canarius. J Comp Neurol. 1976 Feb 15;165(4):457–486. doi: 10.1002/cne.901650405. [DOI] [PubMed] [Google Scholar]
  28. Reiner A., Davis B. M., Brecha N. C., Karten H. J. The distribution of enkephalinlike immunoreactivity in the telencephalon of the adult and developing domestic chicken. J Comp Neurol. 1984 Sep 10;228(2):245–262. doi: 10.1002/cne.902280210. [DOI] [PubMed] [Google Scholar]
  29. Rusak B., Robertson H. A., Wisden W., Hunt S. P. Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science. 1990 Jun 8;248(4960):1237–1240. doi: 10.1126/science.2112267. [DOI] [PubMed] [Google Scholar]
  30. Sagar S. M., Sharp F. R., Curran T. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science. 1988 Jun 3;240(4857):1328–1331. doi: 10.1126/science.3131879. [DOI] [PubMed] [Google Scholar]
  31. Saini K. D., Leppelsack H. J. Cell types of the auditory caudomedial neostriatum of the starling (Sturnus vulgaris). J Comp Neurol. 1981 May 10;198(2):209–229. doi: 10.1002/cne.901980203. [DOI] [PubMed] [Google Scholar]
  32. Sheng M., Greenberg M. E. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron. 1990 Apr;4(4):477–485. doi: 10.1016/0896-6273(90)90106-p. [DOI] [PubMed] [Google Scholar]
  33. Sukhatme V. P., Cao X. M., Chang L. C., Tsai-Morris C. H., Stamenkovich D., Ferreira P. C., Cohen D. R., Edwards S. A., Shows T. B., Curran T. A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell. 1988 Apr 8;53(1):37–43. doi: 10.1016/0092-8674(88)90485-0. [DOI] [PubMed] [Google Scholar]
  34. Williams H., Nottebohm F. Auditory responses in avian vocal motor neurons: a motor theory for song perception in birds. Science. 1985 Jul 19;229(4710):279–282. doi: 10.1126/science.4012321. [DOI] [PubMed] [Google Scholar]
  35. Wisden W., Errington M. L., Williams S., Dunnett S. B., Waters C., Hitchcock D., Evan G., Bliss T. V., Hunt S. P. Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron. 1990 Apr;4(4):603–614. doi: 10.1016/0896-6273(90)90118-y. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES