Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Aug 1;89(15):6911–6915. doi: 10.1073/pnas.89.15.6911

Chemical modification of Glu-953 of the alpha chain of Na+,K(+)-ATPase associated with inactivation of cation occlusion.

R Goldshleger 1, D M Tal 1, J Moorman 1, W D Stein 1, S J Karlish 1
PMCID: PMC49614  PMID: 1353883

Abstract

We have investigated the role, number, and identity of glutamate (or aspartate) residues involved in cation occlusion on Na+, K(+)-ATPase, using the carboxyl reagent N,N'-dicyclohexylcarbodiimide (DCCD). Extensive use is made of selectively trypsinized Na+,K(+)-ATPase--the so-called "19-kDa membranes"--containing a 19-kDa COOH-terminal, smaller (8-11 kDa) membrane-embedded fragments of the alpha chain, and a largely intact beta chain; these membranes have normal Rb+ and Na+ occlusion capacities. The 19-kDa peptide and a smaller (approximately 9 kDa) unidentified peptide(s) are labeled by [14C]DCCD in a Rb(+)-protectable fashion. Rb(+)-protected [14C]DCCD incorporation into the "19 kDa membranes" and into native Na+,K(+)-ATPase is linearly correlated with inactivation of Rb+ occlusion. Similar linear correlations are observed when Rb(+)-protected [14C]DCCD incorporation is measured by examination of labeling of 19-kDa peptide purified from "19-kDa membranes" or of alpha chain purified from native enzyme. Stoichiometries, estimated by extrapolation, are as follows: (for "19-kDa membranes") close to one DCCD per Rb+ site and one DCCD per 19-kDa peptide; and (for native enzyme) close to two DCCD per phosphoenzyme and two DCCD per alpha chain. We suggest that each of two K+ (or Na+) sites contains a carboxyl group, one located in the 19-kDa peptide and one elsewhere in the alpha chain. After cyanogen bromide digestion of purified, labeled alpha chain, or of 19-kDa peptide, a labeled fragment of apparent M(r) approximately 4 kDa was detected and was identified as that with NH2-terminal Lys-943. Rb(+)-protected [14C]DCCD incorporation was associated almost exclusively with Glu-953. We suggest that the cation occlusion "cage" consists of ligating groups donated by different trans-membrane segments and includes two carboxyl groups such as Glu-953 (and perhaps Glu-327) as well as neutral groups, in two K+ (or Na+) sites, but only neutral groups in the third Na+ site.

Full text

PDF
6911

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arguello J. M., Kaplan J. H. Evidence for essential carboxyls in the cation-binding domain of the Na,K-ATPase. J Biol Chem. 1991 Aug 5;266(22):14627–14635. [PubMed] [Google Scholar]
  2. Baxter-Lowe L. A., Guo J. Z., Bergstrom E. E., Hokin L. E. Molecular cloning of the Na,K-ATPase alpha-subunit in developing brine shrimp and sequence comparison with higher organisms. FEBS Lett. 1989 Oct 23;257(1):181–187. doi: 10.1016/0014-5793(89)81816-2. [DOI] [PubMed] [Google Scholar]
  3. Capasso J. M., Hoving S., Tal D. M., Goldshleger R., Karlish S. J. Extensive digestion of Na+,K(+)-ATPase by specific and nonspecific proteases with preservation of cation occlusion sites. J Biol Chem. 1992 Jan 15;267(2):1150–1158. [PubMed] [Google Scholar]
  4. Clarke D. M., Loo T. W., Inesi G., MacLennan D. H. Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature. 1989 Jun 8;339(6224):476–478. doi: 10.1038/339476a0. [DOI] [PubMed] [Google Scholar]
  5. Clarke D. M., Loo T. W., MacLennan D. H. Functional consequences of alterations to polar amino acids located in the transmembrane domain of the Ca2(+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1990 Apr 15;265(11):6262–6267. [PubMed] [Google Scholar]
  6. David P., Mayan H., Cohen H., Tal D. M., Karlish S. J. Guanidinium derivatives act as high affinity antagonists of Na+ ions in occlusion sites of Na+,K(+)-ATPase. J Biol Chem. 1992 Jan 15;267(2):1141–1149. [PubMed] [Google Scholar]
  7. De Weer P., Gadsby D. C., Rakowski R. F. Voltage dependence of the Na-K pump. Annu Rev Physiol. 1988;50:225–241. doi: 10.1146/annurev.ph.50.030188.001301. [DOI] [PubMed] [Google Scholar]
  8. Forbush B., 3rd Rapid release of 45Ca from an occluded state of the Na,K-pump. J Biol Chem. 1988 Jun 15;263(17):7970–7978. [PubMed] [Google Scholar]
  9. Glynn I. M., Karlish S. J. Occluded cations in active transport. Annu Rev Biochem. 1990;59:171–205. doi: 10.1146/annurev.bi.59.070190.001131. [DOI] [PubMed] [Google Scholar]
  10. Goldshlegger R., Karlish S. J., Rephaeli A., Stein W. D. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles. J Physiol. 1987 Jun;387:331–355. doi: 10.1113/jphysiol.1987.sp016576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gorga F. R. Inhibition of (Na+,K+)-ATPase by dicyclohexylcarbodiimide. Evidence for two carboxyl groups that are essential for enzymatic activity. Biochemistry. 1985 Nov 19;24(24):6783–6788. doi: 10.1021/bi00345a009. [DOI] [PubMed] [Google Scholar]
  12. Horowitz B., Eakle K. A., Scheiner-Bobis G., Randolph G. R., Chen C. Y., Hitzeman R. A., Farley R. A. Synthesis and assembly of functional mammalian Na,K-ATPase in yeast. J Biol Chem. 1990 Mar 15;265(8):4189–4192. [PubMed] [Google Scholar]
  13. Jewell E. A., Lingrel J. B. Comparison of the substrate dependence properties of the rat Na,K-ATPase alpha 1, alpha 2, and alpha 3 isoforms expressed in HeLa cells. J Biol Chem. 1991 Sep 5;266(25):16925–16930. [PubMed] [Google Scholar]
  14. Jorgensen P. L. Purification and characterization of (Na+ plus K+ )-ATPase. IV. Estimation of the purity and of the molecular weight and polypeptide content per enzyme unit in preparations from the outer medulla of rabbit kidney. Biochim Biophys Acta. 1974 Jul 12;356(1):53–67. doi: 10.1016/0005-2736(74)90293-4. [DOI] [PubMed] [Google Scholar]
  15. Jørgensen P. L., Collins J. H. Tryptic and chymotryptic cleavage sites in sequence of alpha-subunit of (Na+ + K+)-ATPase from outer medulla of mammalian kidney. Biochim Biophys Acta. 1986 Sep 11;860(3):570–576. doi: 10.1016/0005-2736(86)90555-9. [DOI] [PubMed] [Google Scholar]
  16. Karlish S. J., Goldshleger R., Stein W. D. A 19-kDa C-terminal tryptic fragment of the alpha chain of Na/K-ATPase is essential for occlusion and transport of cations. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4566–4570. doi: 10.1073/pnas.87.12.4566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Karlish S. J., Goldshleger R., Tal D. M., Stein W. D. Structure of the cation binding sites of Na/K-ATPase. Soc Gen Physiol Ser. 1991;46:129–141. [PubMed] [Google Scholar]
  18. Lebovitz R. M., Takeyasu K., Fambrough D. M. Molecular characterization and expression of the (Na+ + K+)-ATPase alpha-subunit in Drosophila melanogaster. EMBO J. 1989 Jan;8(1):193–202. doi: 10.1002/j.1460-2075.1989.tb03364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  20. Moczydlowski E. G., Fortes P. A. Characterization of 2',3'-O-(2,4,6-trinitrocyclohexadienylidine)adenosine 5'-triphosphate as a fluorescent probe of the ATP site of sodium and potassium transport adenosine triphosphatase. Determination of nucleotide binding stoichiometry and ion-induced changes in affinity for ATP. J Biol Chem. 1981 Mar 10;256(5):2346–2356. [PubMed] [Google Scholar]
  21. Noguchi S., Mishina M., Kawamura M., Numa S. Expression of functional (Na+ + K+)-ATPase from cloned cDNAs. FEBS Lett. 1987 Dec 10;225(1-2):27–32. doi: 10.1016/0014-5793(87)81125-0. [DOI] [PubMed] [Google Scholar]
  22. Ovchinnikov YuA, Modyanov N. N., Broude N. E., Petrukhin K. E., Grishin A. V., Arzamazova N. M., Aldanova N. A., Monastyrskaya G. S., Sverdlov E. D. Pig kidney Na+,K+-ATPase. Primary structure and spatial organization. FEBS Lett. 1986 Jun 9;201(2):237–245. doi: 10.1016/0014-5793(86)80616-0. [DOI] [PubMed] [Google Scholar]
  23. Pedemonte C. H., Kaplan J. H. Carbodiimide inactivation of Na,K-ATPase. A consequence of internal cross-linking and not carboxyl group modification. J Biol Chem. 1986 Mar 15;261(8):3632–3639. [PubMed] [Google Scholar]
  24. Pedemonte C. H., Kaplan J. H. Chemical modification as an approach to elucidation of sodium pump structure-function relations. Am J Physiol. 1990 Jan;258(1 Pt 1):C1–23. doi: 10.1152/ajpcell.1990.258.1.C1. [DOI] [PubMed] [Google Scholar]
  25. Robinson J. D. Affinity of the (Na+ plus K+)-dependent ATPase for Na+ measured by Na+-modified enzyme inactivation. FEBS Lett. 1974 Jan 15;38(3):325–328. doi: 10.1016/0014-5793(74)80083-9. [DOI] [PubMed] [Google Scholar]
  26. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  27. Shani-Sekler M., Goldshleger R., Tal D. M., Karlish S. J. Inactivation of Rb+ and Na+ occlusion on (Na+,K+)-ATPase by modification of carboxyl groups. J Biol Chem. 1988 Dec 25;263(36):19331–19341. [PubMed] [Google Scholar]
  28. Shani M., Goldschleger R., Karlish S. J. Rb+ occlusion in renal (Na+ + K+)-ATPase characterized with a simple manual assay. Biochim Biophys Acta. 1987 Nov 2;904(1):13–21. doi: 10.1016/0005-2736(87)90081-2. [DOI] [PubMed] [Google Scholar]
  29. Shull G. E., Schwartz A., Lingrel J. B. Amino-acid sequence of the catalytic subunit of the (Na+ + K+)ATPase deduced from a complementary DNA. Nature. 1985 Aug 22;316(6030):691–695. doi: 10.1038/316691a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES