Abstract
The effects of urea and of guanidinium chloride on binding constants in water for 6-(4-tert-butylanilino)-naphthalene-2-sulfonate and of bis(p-tert-butylphenyl) phosphate binding to beta-cyclodextrin and to N,N'-bis(6-beta-cyclo-dextrinyl)imidazolium ion have been determined. Their effects on the water solubility of p-tert-butylbenzyl alcohol and p-methylbenzyl alcohol have also been examined. Quantitative correlations show that the effects of these additives, which diminish hydrophobic effects, are similar for release of a tert-butylphenyl group from a cyclodextrin cavity into water or for solubilizing such a group from a second phase. The effects of these agents on the binding constants for double-ended substrates binding to the bis(cyclodextrin) host are much larger than for a simple substrate binding to monomeric cyclodextrin, consistent with additivity of free-energy perturbations. Ethanol also decreases binding in these systems, and increases solubilities, but the quantitative correlations are less straightforward.
Full text
PDF


Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Breslow R., Guo T. Surface tension measurements show that chaotropic salting-in denaturants are not just water-structure breakers. Proc Natl Acad Sci U S A. 1990 Jan;87(1):167–169. doi: 10.1073/pnas.87.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rashin A. A. Buried surface area, conformational entropy, and protein stability. Biopolymers. 1984 Aug;23(8):1605–1620. doi: 10.1002/bip.360230813. [DOI] [PubMed] [Google Scholar]