Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Aug 1;89(15):7026–7030. doi: 10.1073/pnas.89.15.7026

A role for microtubules in sorting endocytic vesicles in rat hepatocytes.

J S Goltz 1, A W Wolkoff 1, P M Novikoff 1, R J Stockert 1, P Satir 1
PMCID: PMC49638  PMID: 1353884

Abstract

The vectorial nature of hepatocyte receptor-mediated endocytosis (RME) and its susceptibility to cytoskeletal disruptors has suggested that a polarized network of microtubules plays a vital role in directed movement during sorting. Using as markers a well-known ligand, asialoorosomucoid, and its receptor, we have isolated endocytic vesicles that bind directly to and interact with stabilized endogenous hepatocyte microtubules at specific times during a synchronous, experimentally initiated, single wave of RME. Both ligand- and receptor-containing vesicles copelleted with microtubules in the absence of ATP but did not pellet under similar conditions when microtubules were not polymerized. When 5 mM ATP was added to preparations of microtubule-bound vesicles, ligand-containing vesicles were released into the supernatant, while receptor-containing vesicles remained immobilized on the microtubules. Release of ligand-containing vesicles from microtubules was prevented by monensin treatment during the endocytic wave. Several proteins, including the microtubule motor protein cytoplasmic dynein, were present in these preparations and were released from microtubule pellets by ATP addition concomitantly with ligand. These results suggest that receptor domains within the endosome can be immobilized by attachment to microtubules so that, following monensin-sensitive dissociation of ligand from receptor, ligand-containing vesicles can be pulled along microtubules away from the receptor domains by a motor molecule, such as cytoplasmic dynein, thereby delineating sorting.

Full text

PDF
7026

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bomsel M., Parton R., Kuznetsov S. A., Schroer T. A., Gruenberg J. Microtubule- and motor-dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell. 1990 Aug 24;62(4):719–731. doi: 10.1016/0092-8674(90)90117-w. [DOI] [PubMed] [Google Scholar]
  2. Breitfeld P. P., Simmons C. F., Jr, Strous G. J., Geuze H. J., Schwartz A. L. Cell biology of the asialoglycoprotein receptor system: a model of receptor-mediated endocytosis. Int Rev Cytol. 1985;97:47–95. doi: 10.1016/s0074-7696(08)62348-7. [DOI] [PubMed] [Google Scholar]
  3. Collins C. A., Vallee R. B. Preparation of microtubules from rat liver and testis: cytoplasmic dynein is a major microtubule associated protein. Cell Motil Cytoskeleton. 1989;14(4):491–500. doi: 10.1002/cm.970140407. [DOI] [PubMed] [Google Scholar]
  4. Dabora S. L., Sheetz M. P. Cultured cell extracts support organelle movement on microtubules in vitro. Cell Motil Cytoskeleton. 1988;10(4):482–495. doi: 10.1002/cm.970100405. [DOI] [PubMed] [Google Scholar]
  5. De Brabander M., Nuydens R., Geerts H., Hopkins C. R. Dynamic behavior of the transferrin receptor followed in living epidermoid carcinoma (A431) cells with nanovid microscopy. Cell Motil Cytoskeleton. 1988;9(1):30–47. doi: 10.1002/cm.970090105. [DOI] [PubMed] [Google Scholar]
  6. Gibbons I. R., Lee-Eiford A., Mocz G., Phillipson C. A., Tang W. J., Gibbons B. H. Photosensitized cleavage of dynein heavy chains. Cleavage at the "V1 site" by irradiation at 365 nm in the presence of ATP and vanadate. J Biol Chem. 1987 Feb 25;262(6):2780–2786. [PubMed] [Google Scholar]
  7. Gruenberg J., Griffiths G., Howell K. E. Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J Cell Biol. 1989 Apr;108(4):1301–1316. doi: 10.1083/jcb.108.4.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harford J., Wolkoff A. W., Ashwell G., Klausner R. D. Monensin inhibits intracellular dissociation of asialoglycoproteins from their receptor. J Cell Biol. 1983 Jun;96(6):1824–1828. doi: 10.1083/jcb.96.6.1824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kaiser J., Stockert R. J., Wolkoff A. W. Effect of monensin on receptor recycling during continuous endocytosis of asialoorosomucoid. Exp Cell Res. 1988 Feb;174(2):472–480. doi: 10.1016/0014-4827(88)90316-3. [DOI] [PubMed] [Google Scholar]
  10. Kelly R. B. Microtubules, membrane traffic, and cell organization. Cell. 1990 Apr 6;61(1):5–7. doi: 10.1016/0092-8674(90)90206-t. [DOI] [PubMed] [Google Scholar]
  11. Kindberg G. M., Gudmundsen O., Berg T. The effect of vanadate on receptor-mediated endocytosis of asialoorosomucoid in rat liver parenchymal cells. J Biol Chem. 1990 Jun 5;265(16):8999–9005. [PubMed] [Google Scholar]
  12. Kreis T. E., Matteoni R., Hollinshead M., Tooze J. Secretory granules and endosomes show saltatory movement biased to the anterograde and retrograde directions, respectively, along microtubules in AtT20 cells. Eur J Cell Biol. 1989 Jun;49(1):128–139. [PubMed] [Google Scholar]
  13. Larsen J., Satir P. Analysis of Ni(2+)-induced arrest of Paramecium axonemes. J Cell Sci. 1991 May;99(Pt 1):33–40. doi: 10.1242/jcs.99.1.33. [DOI] [PubMed] [Google Scholar]
  14. Leterrier J. F., Linden M., Nelson B. D. How do microtubules interact in vitro with purified subcellular organelles? Biochem J. 1990 Jul 15;269(2):556–558. doi: 10.1042/bj2690556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lin S. X., Collins C. A. Immunolocalization of cytoplasmic dynein to lysosomes in cultured cells. J Cell Sci. 1992 Jan;101(Pt 1):125–137. doi: 10.1242/jcs.101.1.125. [DOI] [PubMed] [Google Scholar]
  16. Matteoni R., Kreis T. E. Translocation and clustering of endosomes and lysosomes depends on microtubules. J Cell Biol. 1987 Sep;105(3):1253–1265. doi: 10.1083/jcb.105.3.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nasr A., Satir P. Alloaffinity filtration: a general approach to the purification of dynein and dynein-like molecules. Anal Biochem. 1985 Nov 15;151(1):97–108. doi: 10.1016/0003-2697(85)90058-2. [DOI] [PubMed] [Google Scholar]
  18. Novikoff A. B., Novikoff P. M., Rosen O. M., Rubin C. S. Organelle relationships in cultured 3T3-L1 preadipocytes. J Cell Biol. 1980 Oct;87(1):180–196. doi: 10.1083/jcb.87.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Oka J. A., Weigel P. H. Microtubule-depolymerizing agents inhibit asialo-orosomucoid delivery to lysosomes but not its endocytosis or degradation in isolated rat hepatocytes. Biochim Biophys Acta. 1983 Dec 19;763(4):368–376. doi: 10.1016/0167-4889(83)90098-8. [DOI] [PubMed] [Google Scholar]
  20. Oka J. A., Weigel P. H. Vanadate modulates the activity of a subpopulation of asialoglycoprotein receptors on isolated rat hepatocytes: active surface receptors are internalized and replaced by inactive receptors. Arch Biochem Biophys. 1991 Sep;289(2):362–370. doi: 10.1016/0003-9861(91)90424-h. [DOI] [PubMed] [Google Scholar]
  21. Paschal B. M., King S. M., Moss A. G., Collins C. A., Vallee R. B., Witman G. B. Isolated flagellar outer arm dynein translocates brain microtubules in vitro. Nature. 1987 Dec 17;330(6149):672–674. doi: 10.1038/330672a0. [DOI] [PubMed] [Google Scholar]
  22. Samuelson A. C., Stockert R. J., Novikoff A. B., Novikoff P. M., Saez J. C., Spray D. C., Wolkoff A. W. Influence of cytosolic pH on receptor-mediated endocytosis of asialoorosomucoid. Am J Physiol. 1988 Jun;254(6 Pt 1):C829–C838. doi: 10.1152/ajpcell.1988.254.6.C829. [DOI] [PubMed] [Google Scholar]
  23. Satir P. Approaches to potential sliding mechanisms of cytoplasmic microtubules. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):285–292. doi: 10.1101/sqb.1982.046.01.030. [DOI] [PubMed] [Google Scholar]
  24. Satir P., Goltz J. S., Wolkoff A. W. Microtubule-based cell motility: the role of microtubules in cell motility and differentiation. Cancer Invest. 1990;8(6):685–690. doi: 10.3109/07357909009018945. [DOI] [PubMed] [Google Scholar]
  25. Schroer T. A., Sheetz M. P. Functions of microtubule-based motors. Annu Rev Physiol. 1991;53:629–652. doi: 10.1146/annurev.ph.53.030191.003213. [DOI] [PubMed] [Google Scholar]
  26. Schroer T. A., Steuer E. R., Sheetz M. P. Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell. 1989 Mar 24;56(6):937–946. doi: 10.1016/0092-8674(89)90627-2. [DOI] [PubMed] [Google Scholar]
  27. Warren G. Cell biology. Trawling for receptors. Nature. 1990 Jul 26;346(6282):318–319. doi: 10.1038/346318b0. [DOI] [PubMed] [Google Scholar]
  28. Wolkoff A. W., Klausner R. D., Ashwell G., Harford J. Intracellular segregation of asialoglycoproteins and their receptor: a prelysosomal event subsequent to dissociation of the ligand-receptor complex. J Cell Biol. 1984 Feb;98(2):375–381. doi: 10.1083/jcb.98.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES