Abstract
A series of peptide-acridine conjugates was designed and synthesized, based on three features of the proposed catalytic mechanism of RNase A: 2'-proton abstraction by His-12, proton donation to the leaving 5'-oxygen by His-119, and stabilization of the pentacoordinated phosphorous transition state by Lys-41. The substrate binding capability of RNase A was mimicked by the intercalator, acridine. Lysine served as a linker between acridine and the catalytic tripeptide. Cleavage of target RNA was monitored by agarose gel electrophoresis and by gel-permeation chromatography. The carboxyl-amidated conjugates HGHK(Acr)-NH2, HPHK(Acr)-NH2, and GGHK(Acr)-NH2 (where Acr indicates 2-methyl-9-acridinemethylene) all had similar hydrolytic activity. The catalytic mechanism most likely involved only the abstraction of the 2'-proton and stabilization of the transition state. These RNase mimics utilized rRNA and single-stranded RNA but not double-stranded RNA and tRNA as substrates.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Breslow R., Huang D. L., Anslyn E. On the mechanism of action of ribonucleases: dinucleotide cleavage catalyzed by imidazole and Zn2+. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1746–1750. doi: 10.1073/pnas.86.6.1746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breslow R., Huang D. L. Effects of metal ions, including Mg2+ and lanthanides, on the cleavage of ribonucleotides and RNA model compounds. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4080–4083. doi: 10.1073/pnas.88.10.4080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calnan B. J., Tidor B., Biancalana S., Hudson D., Frankel A. D. Arginine-mediated RNA recognition: the arginine fork. Science. 1991 May 24;252(5009):1167–1171. doi: 10.1126/science.252.5009.1167. [DOI] [PubMed] [Google Scholar]
- Feng S., Holland E. C. HIV-1 tat trans-activation requires the loop sequence within tar. Nature. 1988 Jul 14;334(6178):165–167. doi: 10.1038/334165a0. [DOI] [PubMed] [Google Scholar]
- Hannig E. M., Thiele D. J., Leibowitz M. J. Saccharomyces cerevisiae killer virus transcripts contain template-coded polyadenylate tracts. Mol Cell Biol. 1984 Jan;4(1):101–109. doi: 10.1128/mcb.4.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin S. B., Blake K. R., Miller P. S., Ts'o P. O. Use of EDTA derivatization to characterize interactions between oligodeoxyribonucleoside methylphosphonates and nucleic acids. Biochemistry. 1989 Feb 7;28(3):1054–1061. doi: 10.1021/bi00429a020. [DOI] [PubMed] [Google Scholar]
- Markley J. L. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. I. Reinvestigation of the histidine peak assignments. Biochemistry. 1975 Aug 12;14(16):3546–3554. doi: 10.1021/bi00687a006. [DOI] [PubMed] [Google Scholar]
- Melchior W. B., Jr, Fahrney D. Ethoxyformylation of proteins. Reaction of ethoxyformic anhydride with alpha-chymotrypsin, pepsin, and pancreatic ribonuclease at pH 4. Biochemistry. 1970 Jan 20;9(2):251–258. doi: 10.1021/bi00804a010. [DOI] [PubMed] [Google Scholar]
- Perello M., Barbier B., Brack A. Hydrolysis of oligoribonucleotides by alpha-helical basic peptides. Int J Pept Protein Res. 1991 Aug;38(2):154–160. doi: 10.1111/j.1399-3011.1991.tb01423.x. [DOI] [PubMed] [Google Scholar]
- Sakore T. D., Reddy B. S., Sobell H. M. Visualization of drug-nucleic acid interactions at atomic resolution. IV. Structure of an aminoacridine--dinucleoside monophosphate crystalline complex, 9-aminoacridine--5-iodocytidylyl (3'--5') guanosine. J Mol Biol. 1979 Dec 25;135(4):763–785. doi: 10.1016/0022-2836(79)90512-6. [DOI] [PubMed] [Google Scholar]
- Sigman D. S. Chemical nucleases. Biochemistry. 1990 Oct 2;29(39):9097–9105. doi: 10.1021/bi00491a001. [DOI] [PubMed] [Google Scholar]
- Tung C. H., Rudolph M. J., Stein S. Preparation of oligonucleotide-peptide conjugates. Bioconjug Chem. 1991 Nov-Dec;2(6):464–465. doi: 10.1021/bc00012a015. [DOI] [PubMed] [Google Scholar]
- Welsh J. D., Leibowitz M. J., Wickner R. B. Virion DNA-independent RNA polymerase from Saccharomyces cerevisiae. Nucleic Acids Res. 1980 Jun 11;8(11):2349–2363. doi: 10.1093/nar/8.11.2349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuckermann R. N., Schultz P. G. Site-selective cleavage of structured RNA by a staphylococcal nuclease-DNA hybrid. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1766–1770. doi: 10.1073/pnas.86.6.1766. [DOI] [PMC free article] [PubMed] [Google Scholar]