Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Aug 1;89(15):7159–7163. doi: 10.1073/pnas.89.15.7159

Elimination of smooth muscle cells in experimental restenosis: targeting of fibroblast growth factor receptors.

W Casscells 1, D A Lappi 1, B B Olwin 1, C Wai 1, M Siegman 1, E H Speir 1, J Sasse 1, A Baird 1
PMCID: PMC49665  PMID: 1323129

Abstract

Factors in plasma and platelets do not fully account for the proliferation of smooth muscle cells in vascular injury, implying that additional factors are involved. Recently, we and others have observed that vascular injury regulates basic fibroblast growth factor, suggesting a further role for this pleiotropic factor. We report here that injury of rat arteries leads to an increase in fibroblast growth factor receptors in vascular smooth muscle cells. This up-regulation makes smooth muscle cells susceptible, in vitro and in vivo, to the lethal effects of a conjugate of basic fibroblast growth factor with the ribosome inactivator saporin. Saporin alone has no effect, whereas the conjugate kills proliferating, but not quiescent, smooth muscle cells in vitro. In vivo, one to three doses inhibit neointimal proliferation but have no apparent effect on the uninjured artery. Thus, the up-regulation of fibroblast growth factor receptors in vascular injury suggests new therapeutic possibilities for such refractory conditions as restenosis following balloon angioplasty.

Full text

PDF
7159

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avivi A., Zimmer Y., Yayon A., Yarden Y., Givol D. Flg-2, a new member of the family of fibroblast growth factor receptors. Oncogene. 1991 Jun;6(6):1089–1092. [PubMed] [Google Scholar]
  2. Bernard O., Li M., Reid H. H. Expression of two different forms of fibroblast growth factor receptor 1 in different mouse tissues and cell lines. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7625–7629. doi: 10.1073/pnas.88.17.7625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burrus L. W., Olwin B. B. Isolation of a receptor for acidic and basic fibroblast growth factor from embryonic chick. J Biol Chem. 1989 Nov 5;264(31):18647–18653. [PubMed] [Google Scholar]
  4. Casscells W. Smooth muscle cell growth factors. Prog Growth Factor Res. 1991;3(3):177–206. doi: 10.1016/0955-2235(91)90006-p. [DOI] [PubMed] [Google Scholar]
  5. Casscells W., Speir E., Sasse J., Klagsbrun M., Allen P., Lee M., Calvo B., Chiba M., Haggroth L., Folkman J. Isolation, characterization, and localization of heparin-binding growth factors in the heart. J Clin Invest. 1990 Feb;85(2):433–441. doi: 10.1172/JCI114456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clowes A. W., Reidy M. A. Prevention of stenosis after vascular reconstruction: pharmacologic control of intimal hyperplasia--a review. J Vasc Surg. 1991 Jun;13(6):885–891. doi: 10.1067/mva.1991.27929. [DOI] [PubMed] [Google Scholar]
  7. Cuevas P., Carceller F., Ortega S., Zazo M., Nieto I., Giménez-Gallego G. Hypotensive activity of fibroblast growth factor. Science. 1991 Nov 22;254(5035):1208–1210. doi: 10.1126/science.1957172. [DOI] [PubMed] [Google Scholar]
  8. Cuevas P., Gonzalez A. M., Carceller F., Baird A. Vascular response to basic fibroblast growth factor when infused onto the normal adventitia or into the injured media of the rat carotid artery. Circ Res. 1991 Aug;69(2):360–369. doi: 10.1161/01.res.69.2.360. [DOI] [PubMed] [Google Scholar]
  9. Dionne C. A., Crumley G., Bellot F., Kaplow J. M., Searfoss G., Ruta M., Burgess W. H., Jaye M., Schlessinger J. Cloning and expression of two distinct high-affinity receptors cross-reacting with acidic and basic fibroblast growth factors. EMBO J. 1990 Sep;9(9):2685–2692. doi: 10.1002/j.1460-2075.1990.tb07454.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Friesel R., Dawid I. B. cDNA cloning and developmental expression of fibroblast growth factor receptors from Xenopus laevis. Mol Cell Biol. 1991 May;11(5):2481–2488. doi: 10.1128/mcb.11.5.2481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fu Y. M., Spirito P., Yu Z. X., Biro S., Sasse J., Lei J., Ferrans V. J., Epstein S. E., Casscells W. Acidic fibroblast growth factor in the developing rat embryo. J Cell Biol. 1991 Sep;114(6):1261–1273. doi: 10.1083/jcb.114.6.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gospodarowicz D., Hirabayashi K., Giguère L., Tauber J. P. Factors controlling the proliferative rate, final cell density, and life span of bovine vascular smooth muscle cells in culture. J Cell Biol. 1981 Jun;89(3):568–578. doi: 10.1083/jcb.89.3.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grotendorst G. R., Chang T., Seppä H. E., Kleinman H. K., Martin G. R. Platelet-derived growth factor is a chemoattractant for vascular smooth muscle cells. J Cell Physiol. 1982 Nov;113(2):261–266. doi: 10.1002/jcp.1041130213. [DOI] [PubMed] [Google Scholar]
  14. Hou J. Z., Kan M. K., McKeehan K., McBride G., Adams P., McKeehan W. L. Fibroblast growth factor receptors from liver vary in three structural domains. Science. 1991 Feb 8;251(4994):665–668. doi: 10.1126/science.1846977. [DOI] [PubMed] [Google Scholar]
  15. Imamura T., Tokita Y., Mitsui Y. Purification of basic FGF receptors from rat brain. Biochem Biophys Res Commun. 1988 Sep 15;155(2):583–590. doi: 10.1016/s0006-291x(88)80534-5. [DOI] [PubMed] [Google Scholar]
  16. Johnson D. E., Lu J., Chen H., Werner S., Williams L. T. The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. Mol Cell Biol. 1991 Sep;11(9):4627–4634. doi: 10.1128/mcb.11.9.4627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lappi D. A., Maher P. A., Martineau D., Baird A. The basic fibroblast growth factor-saporin mitotoxin acts through the basic fibroblast growth factor receptor. J Cell Physiol. 1991 Apr;147(1):17–26. doi: 10.1002/jcp.1041470104. [DOI] [PubMed] [Google Scholar]
  18. Lappi D. A., Martineau D., Baird A. Biological and chemical characterization of basic FGF-saporin mitotoxin. Biochem Biophys Res Commun. 1989 Apr 28;160(2):917–923. doi: 10.1016/0006-291x(89)92522-9. [DOI] [PubMed] [Google Scholar]
  19. Lee P. L., Johnson D. E., Cousens L. S., Fried V. A., Williams L. T. Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science. 1989 Jul 7;245(4913):57–60. doi: 10.1126/science.2544996. [DOI] [PubMed] [Google Scholar]
  20. Lindner V., Lappi D. A., Baird A., Majack R. A., Reidy M. A. Role of basic fibroblast growth factor in vascular lesion formation. Circ Res. 1991 Jan;68(1):106–113. doi: 10.1161/01.res.68.1.106. [DOI] [PubMed] [Google Scholar]
  21. Lindner V., Reidy M. A. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3739–3743. doi: 10.1073/pnas.88.9.3739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Majack R. A., Majesky M. W., Goodman L. V. Role of PDGF-A expression in the control of vascular smooth muscle cell growth by transforming growth factor-beta. J Cell Biol. 1990 Jul;111(1):239–247. doi: 10.1083/jcb.111.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mansukhani A., Moscatelli D., Talarico D., Levytska V., Basilico C. A murine fibroblast growth factor (FGF) receptor expressed in CHO cells is activated by basic FGF and Kaposi FGF. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4378–4382. doi: 10.1073/pnas.87.11.4378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mereau A., Pieri I., Gamby C., Courty J., Barritault D. Purification of basic fibroblast growth factor receptors from bovine brain. Biochimie. 1989 Jul;71(7):865–871. doi: 10.1016/0300-9084(89)90051-5. [DOI] [PubMed] [Google Scholar]
  25. Musci T. J., Amaya E., Kirschner M. W. Regulation of the fibroblast growth factor receptor in early Xenopus embryos. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8365–8369. doi: 10.1073/pnas.87.21.8365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Olwin B. B., Hauschka S. D. Fibroblast growth factor receptor levels decrease during chick embryogenesis. J Cell Biol. 1990 Feb;110(2):503–509. doi: 10.1083/jcb.110.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Partanen J., Mäkelä T. P., Eerola E., Korhonen J., Hirvonen H., Claesson-Welsh L., Alitalo K. FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern. EMBO J. 1991 Jun;10(6):1347–1354. doi: 10.1002/j.1460-2075.1991.tb07654.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pasquale E. B., Singer S. J. Identification of a developmentally regulated protein-tyrosine kinase by using anti-phosphotyrosine antibodies to screen a cDNA expression library. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5449–5453. doi: 10.1073/pnas.86.14.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Reid H. H., Wilks A. F., Bernard O. Two forms of the basic fibroblast growth factor receptor-like mRNA are expressed in the developing mouse brain. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1596–1600. doi: 10.1073/pnas.87.4.1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Risau W. Developing brain produces an angiogenesis factor. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3855–3859. doi: 10.1073/pnas.83.11.3855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ross R., Masuda J., Raines E. W. Cellular interactions, growth factors, and smooth muscle proliferation in atherogenesis. Ann N Y Acad Sci. 1990;598:102–112. doi: 10.1111/j.1749-6632.1990.tb42282.x. [DOI] [PubMed] [Google Scholar]
  32. Safran A., Avivi A., Orr-Urtereger A., Neufeld G., Lonai P., Givol D., Yarden Y. The murine flg gene encodes a receptor for fibroblast growth factor. Oncogene. 1990 May;5(5):635–643. [PubMed] [Google Scholar]
  33. Savona C., Feige J. J. cAMP-mediated regulation of adrenocortical cell bFGF receptors. Ann N Y Acad Sci. 1991;638:412–415. doi: 10.1111/j.1749-6632.1991.tb49056.x. [DOI] [PubMed] [Google Scholar]
  34. Schwartz S. M., Heimark R. L., Majesky M. W. Developmental mechanisms underlying pathology of arteries. Physiol Rev. 1990 Oct;70(4):1177–1209. doi: 10.1152/physrev.1990.70.4.1177. [DOI] [PubMed] [Google Scholar]
  35. Speir E., Sasse J., Shrivastav S., Casscells W. Culture-induced increase in acidic and basic fibroblast growth factor activities and their association with the nuclei of vascular endothelial and smooth muscle cells. J Cell Physiol. 1991 May;147(2):362–373. doi: 10.1002/jcp.1041470223. [DOI] [PubMed] [Google Scholar]
  36. Spirito P., Fu Y. M., Yu Z. X., Epstein S. E., Casscells W. Immunohistochemical localization of basic and acidic fibroblast growth factors in the developing rat heart. Circulation. 1991 Jul;84(1):322–332. doi: 10.1161/01.cir.84.1.322. [DOI] [PubMed] [Google Scholar]
  37. Whalen G. F., Shing Y., Folkman J. The fate of intravenously administered bFGF and the effect of heparin. Growth Factors. 1989;1(2):157–164. doi: 10.3109/08977198909029125. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES