Abstract
A cDNA clone encoding a glycine transporter has been isolated from rat brain by a combined PCR and plaque-hybridization strategy. mRNA synthesized from this clone (designated GLYT1) directs the expression of sodium- and chloride-dependent, high-affinity uptake of [3H]glycine by Xenopus oocytes. [3H]Glycine transport mediated by clone GLYT1 is blocked by sarcosine but is not blocked by methyl-aminoisobutyric acid or L-alanine, a substrate specificity similar to that described for a previously identified glycine-uptake system called system Gly. In situ hybridization reveals that GLYT1 is prominently expressed in the cervical spinal cord and brainstem, two regions of the central nervous system where glycine is a putative neurotransmitter. GLYT1 is also strongly expressed in the cerebellum and olfactory bulb and is expressed at lower levels in other brain regions. The open reading frame of the GLYT1 cDNA predicts a protein containing 633 amino acids with a molecular mass of approximately 70 kDA. The primary structure and hydropathicity profile of GLYT1 protein reveal that this protein is a member of the sodium- and chloride-dependent superfamily of transporters that utilize neurotransmitters and related substances as substrates.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Blakely R. D., Berson H. E., Fremeau R. T., Jr, Caron M. G., Peek M. M., Prince H. K., Bradley C. C. Cloning and expression of a functional serotonin transporter from rat brain. Nature. 1991 Nov 7;354(6348):66–70. doi: 10.1038/354066a0. [DOI] [PubMed] [Google Scholar]
- Brecha N. C., Sternini C., Humphrey M. F. Cellular distribution of L-glutamate decarboxylase (GAD) and gamma-aminobutyric acidA (GABAA) receptor mRNAs in the retina. Cell Mol Neurobiol. 1991 Oct;11(5):497–509. doi: 10.1007/BF00734812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Debler E. A., Lajtha A. High-affinity transport of gamma-aminobutyric acid, glycine, taurine, L-aspartic acid, and L-glutamic acid in synaptosomal (P2) tissue: a kinetic and substrate specificity analysis. J Neurochem. 1987 Jun;48(6):1851–1856. doi: 10.1111/j.1471-4159.1987.tb05747.x. [DOI] [PubMed] [Google Scholar]
- Erecińska M., Troeger M. B., Wilson D. F., Silver I. A. The role of glial cells in regulation of neurotransmitter amino acids in the external environment. II. Mechanism of aspartate transport. Brain Res. 1986 Mar 26;369(1-2):203–214. doi: 10.1016/0006-8993(86)90529-9. [DOI] [PubMed] [Google Scholar]
- GLOWINSKI J., AXELROD J. INHIBITION OF UPTAKE OF TRITIATED-NORADRENALINE IN THE INTACT RAT BRAIN BY IMIPRAMINE AND STRUCTURALLY RELATED COMPOUNDS. Nature. 1964 Dec 26;204:1318–1319. doi: 10.1038/2041318a0. [DOI] [PubMed] [Google Scholar]
- Guastella J., Nelson N., Nelson H., Czyzyk L., Keynan S., Miedel M. C., Davidson N., Lester H. A., Kanner B. I. Cloning and expression of a rat brain GABA transporter. Science. 1990 Sep 14;249(4974):1303–1306. doi: 10.1126/science.1975955. [DOI] [PubMed] [Google Scholar]
- Halász N., Shepherd G. M. Neurochemistry of the vertebrate olfactory bulb. Neuroscience. 1983 Nov;10(3):579–619. doi: 10.1016/0306-4522(83)90206-3. [DOI] [PubMed] [Google Scholar]
- Hoffman B. J., Mezey E., Brownstein M. J. Cloning of a serotonin transporter affected by antidepressants. Science. 1991 Oct 25;254(5031):579–580. doi: 10.1126/science.1948036. [DOI] [PubMed] [Google Scholar]
- Horn A. S. Dopamine uptake: a review of progress in the last decade. Prog Neurobiol. 1990;34(5):387–400. doi: 10.1016/0301-0082(90)90033-d. [DOI] [PubMed] [Google Scholar]
- Johnston G. A., Iversen L. L. Glycine uptake in rat central nervous system slices and homogenates: evidence for different uptake systems in spinal cord and cerebral cortex. J Neurochem. 1971 Oct;18(10):1951–1961. doi: 10.1111/j.1471-4159.1971.tb09601.x. [DOI] [PubMed] [Google Scholar]
- Kilty J. E., Lorang D., Amara S. G. Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science. 1991 Oct 25;254(5031):578–579. doi: 10.1126/science.1948035. [DOI] [PubMed] [Google Scholar]
- Ottersen O. P., Davanger S., Storm-Mathisen J. Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake. Exp Brain Res. 1987;66(1):211–221. doi: 10.1007/BF00236216. [DOI] [PubMed] [Google Scholar]
- Pacholczyk T., Blakely R. D., Amara S. G. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature. 1991 Mar 28;350(6316):350–354. doi: 10.1038/350350a0. [DOI] [PubMed] [Google Scholar]
- Pourcho R. G., Goebel D. J., Jojich L., Hazlett J. C. Immunocytochemical evidence for the involvement of glycine in sensory centers of the rat brain. Neuroscience. 1992;46(3):643–656. doi: 10.1016/0306-4522(92)90151-q. [DOI] [PubMed] [Google Scholar]
- Schrier B. K., Thompson E. J. On the role of glial cells in the mammalian nervous system. Uptake, excretion, and metabolism of putative neurotransmitters by cultured glial tumor cells. J Biol Chem. 1974 Mar 25;249(6):1769–1780. [PubMed] [Google Scholar]
- Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
- Shimada S., Kitayama S., Lin C. L., Patel A., Nanthakumar E., Gregor P., Kuhar M., Uhl G. Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science. 1991 Oct 25;254(5031):576–578. doi: 10.1126/science.1948034. [DOI] [PubMed] [Google Scholar]
- Smith K. E., Borden L. A., Hartig P. R., Branchek T., Weinshank R. L. Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors. Neuron. 1992 May;8(5):927–935. doi: 10.1016/0896-6273(92)90207-t. [DOI] [PubMed] [Google Scholar]
- Snutch T. P., Leonard J. P., Gilbert M. M., Lester H. A., Davidson N. Rat brain expresses a heterogeneous family of calcium channels. Proc Natl Acad Sci U S A. 1990 May;87(9):3391–3395. doi: 10.1073/pnas.87.9.3391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staatz-Benson C., Potashner S. J. Uptake and release of glycine in the guinea pig cochlear nucleus. J Neurochem. 1987 Jul;49(1):128–137. doi: 10.1111/j.1471-4159.1987.tb03404.x. [DOI] [PubMed] [Google Scholar]
- Usdin T. B., Mezey E., Chen C., Brownstein M. J., Hoffman B. J. Cloning of the cocaine-sensitive bovine dopamine transporter. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11168–11171. doi: 10.1073/pnas.88.24.11168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkin G. P., Csillag A., Balázs R., Kingsbury A. E., Wilson J. E., Johnson A. L. Localization of high affinity [3H]glycine transport sites in the cerebellar cortex. Brain Res. 1981 Jul 6;216(1):11–33. doi: 10.1016/0006-8993(81)91275-0. [DOI] [PubMed] [Google Scholar]
- Yamauchi A., Uchida S., Kwon H. M., Preston A. S., Robey R. B., Garcia-Perez A., Burg M. B., Handler J. S. Cloning of a Na(+)- and Cl(-)-dependent betaine transporter that is regulated by hypertonicity. J Biol Chem. 1992 Jan 5;267(1):649–652. [PubMed] [Google Scholar]
- Zafra F., Gimenez C. Characterization of glycine uptake in plasma membrane vesicles isolated from cultured glioblastoma cells. Brain Res. 1986 Nov 5;397(1):108–116. doi: 10.1016/0006-8993(86)91374-0. [DOI] [PubMed] [Google Scholar]
- Zafra F., Giménez C. Characteristics and adaptive regulation of glycine transport in cultured glial cells. Biochem J. 1989 Mar 1;258(2):403–408. doi: 10.1042/bj2580403. [DOI] [PMC free article] [PubMed] [Google Scholar]