Skip to main content
Journal of Clinical Pathology logoLink to Journal of Clinical Pathology
. 1991 Jan;44(1):33–38. doi: 10.1136/jcp.44.1.33

Interphase cytogenetics using biotin and digoxigenin labelled probes: III. Increased sensitivity and flexibility for detecting HPV in cervical biopsy specimens and cell lines.

C S Herrington 1, A K Graham 1, J O McGee 1
PMCID: PMC497011  PMID: 1847709

Abstract

A monoclonal antibody to digoxin enabled sandwich techniques to be used for the detection of hybridised digoxigenin labelled probes in cultured cells and paraffin wax sections. This system has greater flexibility than alkaline phosphatase conjugated polyclonal antidigoxigenin antibody and permits the use of alternative detector enzymes, such as horseradish peroxidase and fluorescence labels. The APAAP detection system that does not require the use of biotin can also be used in situations where endogenous biotin is a problem. The low level of background staining combined with precise substrate deposition of the amplified peroxidase system gives higher sensitivity and resolution. This permits localisation of closely adjacent chromosomal loci in interphase nuclei. The most sensitive peroxidase based digoxigenin detection system visualises two and a half to 12 copies of human papillomavirus (HPV) per nucleus. This system is also suitable for the analysis of low copy number HPV infection of cervical tissues.

Full text

PDF
33

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boshart M., Gissmann L., Ikenberg H., Kleinheinz A., Scheurlen W., zur Hausen H. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J. 1984 May;3(5):1151–1157. doi: 10.1002/j.1460-2075.1984.tb01944.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burns J., Graham A. K., Frank C., Fleming K. A., Evans M. F., McGee J. O. Detection of low copy human papilloma virus DNA and mRNA in routine paraffin sections of cervix by non-isotopic in situ hybridisation. J Clin Pathol. 1987 Aug;40(8):858–864. doi: 10.1136/jcp.40.8.858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chan V. T., Fleming K. A., McGee J. O. Detection of sub-picogram quantities of specific DNA sequences on blot hybridization with biotinylated probes. Nucleic Acids Res. 1985 Nov 25;13(22):8083–8091. doi: 10.1093/nar/13.22.8083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cremer T., Landegent J., Brückner A., Scholl H. P., Schardin M., Hager H. D., Devilee P., Pearson P., van der Ploeg M. Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84. Hum Genet. 1986 Dec;74(4):346–352. doi: 10.1007/BF00280484. [DOI] [PubMed] [Google Scholar]
  5. Dooley S., Radtke J., Blin N., Unteregger G. Rapid detection of DNA-binding factors using protein-blotting and digoxigenin-dUTP marked probes. Nucleic Acids Res. 1988 Dec 23;16(24):11839–11839. doi: 10.1093/nar/16.24.11839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dürst M., Gissmann L., Ikenberg H., zur Hausen H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3812–3815. doi: 10.1073/pnas.80.12.3812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Herrington C. S., Burns J., Graham A. K., Bhatt B., McGee J. O. Interphase cytogenetics using biotin and digoxigenin labelled probes II: Simultaneous differential detection of human and papilloma virus nucleic acids in individual nuclei. J Clin Pathol. 1989 Jun;42(6):601–606. doi: 10.1136/jcp.42.6.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Herrington C. S., Burns J., Graham A. K., Evans M., McGee J. O. Interphase cytogenetics using biotin and digoxigenin labelled probes I: relative sensitivity of both reporter molecules for detection of HPV16 in CaSki cells. J Clin Pathol. 1989 Jun;42(6):592–600. doi: 10.1136/jcp.42.6.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Herrington C. S., Graham A. K., Flannery D. M., Burns J., McGee J. O. Discrimination of closely homologous HPV types by nonisotopic in situ hybridization: definition and derivation of tissue melting temperatures. Histochem J. 1990 Oct;22(10):545–554. doi: 10.1007/BF01005977. [DOI] [PubMed] [Google Scholar]
  10. Herrington C. S., McGee J. O. Interphase cytogenetics. Neurochem Res. 1990 Apr;15(4):467–474. doi: 10.1007/BF00969934. [DOI] [PubMed] [Google Scholar]
  11. Hopman A. H., Ramaekers F. C., Raap A. K., Beck J. L., Devilee P., van der Ploeg M., Vooijs G. P. In situ hybridization as a tool to study numerical chromosome aberrations in solid bladder tumors. Histochemistry. 1988;89(4):307–316. doi: 10.1007/BF00500631. [DOI] [PubMed] [Google Scholar]
  12. Mincheva A., Gissmann L., zur Hausen H. Chromosomal integration sites of human papillomavirus DNA in three cervical cancer cell lines mapped by in situ hybridization. Med Microbiol Immunol. 1987;176(5):245–256. doi: 10.1007/BF00190531. [DOI] [PubMed] [Google Scholar]
  13. Monji N., Ali H., Castro A. Quantification of digoxin by enzyme immunoassay: synthesis of a maleimide derivative of digoxigenin succinate for enzyme coupling. Experientia. 1980 Oct 15;36(10):1141–1143. doi: 10.1007/BF01976088. [DOI] [PubMed] [Google Scholar]
  14. Mougin C., Guitteny A. F., Fouque B., Viennet G., Teoule R., Bloch B. Histochemical detection of the messenger RNAs coding for calcitonin and calcitonin gene-related peptide in medullary thyroid carcinomas with radioactive and biotinylated oligonucleotide probes. J Pathol. 1990 Mar;160(3):187–194. doi: 10.1002/path.1711600302. [DOI] [PubMed] [Google Scholar]
  15. Pinkel D., Landegent J., Collins C., Fuscoe J., Segraves R., Lucas J., Gray J. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9138–9142. doi: 10.1073/pnas.85.23.9138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Popescu N. C., DiPaolo J. A., Amsbaugh S. C. Integration sites of human papillomavirus 18 DNA sequences on HeLa cell chromosomes. Cytogenet Cell Genet. 1987;44(1):58–62. doi: 10.1159/000132342. [DOI] [PubMed] [Google Scholar]
  17. Schwarz E., Freese U. K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985 Mar 7;314(6006):111–114. doi: 10.1038/314111a0. [DOI] [PubMed] [Google Scholar]
  18. Schäfer R., Zischler H., Epplen J. T. DNA fingerprinting using non-radioactive oligonucleotide probes specific for simple repeats. Nucleic Acids Res. 1988 Oct 11;16(19):9344–9344. doi: 10.1093/nar/16.19.9344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Smith T. W., Butler V. P., Jr, Haber E. Characterization of antibodies of high affinity and specificity for the digitalis glycoside digoxin. Biochemistry. 1970 Jan 20;9(2):331–337. doi: 10.1021/bi00804a020. [DOI] [PubMed] [Google Scholar]
  20. Smith T. W., Butler V. P., Jr, Haber E. Characterization of antibodies of high affinity and specificity for the digitalis glycoside digoxin. Biochemistry. 1970 Jan 20;9(2):331–337. doi: 10.1021/bi00804a020. [DOI] [PubMed] [Google Scholar]
  21. Valdes R., Jr, Brown B. A., Graves S. W. Variable cross-reactivity of digoxin metabolites in digoxin immunoassays. Am J Clin Pathol. 1984 Aug;82(2):210–213. doi: 10.1093/ajcp/82.2.210. [DOI] [PubMed] [Google Scholar]
  22. de Villiers E. M., Gissmann L., zur Hausen H. Molecular cloning of viral DNA from human genital warts. J Virol. 1981 Dec;40(3):932–935. doi: 10.1128/jvi.40.3.932-935.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES