Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jul 12;72(Pt 8):1077–1080. doi: 10.1107/S2056989016010951

Crystal structure of tetra­kis­(isonicotinamide-κN)bis­(thio­cyanato-κN)cobalt(II)–isonicotinamide–ethanol (1/2/1)

Tristan Neumann a,*, Inke Jess a, Christian Näther a
PMCID: PMC4971845  PMID: 27536386

The crystal structure of the title compound consists of discrete octa­hedral cobalt(II) complexes that are linked by a variety of hydrogen-bonding inter­actions into a three-dimensional network.

Keywords: crystal structure, hydrogen bonding, isonicotinamide, cobalt

Abstract

The asymmetric unit of the title compound, [Co(NCS)2(C6H6N2O)4]·2C6H6N2O·C2H5OH, comprises one CoII cation, two thio­cyanate anions, four coordinating and two solvent isonicotinamide molecules and one ethanol solvent mol­ecule. The CoII cations are octa­hedrally coordinated by four N-coordinating isonicotinamide ligands and two terminally N-bonded thio­cyanate anions. These discrete complexes are linked by inter­molecular N—H⋯O and N—H⋯S hydrogen-bonding inter­actions into a three-dimensional network. The two isonicotinamide and the ethanol solvent mol­ecules are embedded in channels of this network and are linked through further N—H⋯O and N—H⋯N hydrogen bonds to the network. The ethanol solvent mol­ecule is disordered over two sets of sites (occupancy ratio 0.6:0.4).

Chemical context  

There is an increasing inter­est in compounds showing cooperative magnetic properties, such as ferromagnetism, anti­ferromagnetism and metamagnetism or a slow relaxation of the magnetization, indicative of single-mol­ecule or single-chain magnetism (Gao et al., 2009; Ma et al., 2009; Palion-Gazda et al., 2015; Näther et al., 2013). In this context we have reported on a number of one-dimensional cobalt(II) thio­cyanate coordination compounds with different N-donor co-ligands that show slow relaxations of the magnetization which in some compounds can be traced back to the behaviour of single-chain magnets (SCM) (Wöhlert et al., 2014; Werner et al., 2014, 2015a ,b ,c ,). In the course of our systematic investigation of these materials, we became inter­ested in the monodentate ligand isonicotinamide, which can coordinate with the N atom to the CoII atoms, forming the desired one-dimensional compounds. However, instead of the expected chain compound, a discrete complex with additional solvate mol­ecules of composition [Co(NCS)2(C6H6N2O)4]·2C6H6N2O·C2H5OH was obtained in the current study and characterized by single-crystal X-ray diffraction.

Structural commentary  

The asymmetric unit of the title compound consists of one CoII cation, two thio­cyanate ligands, six isonicotinamide mol­ecules (four coordinating, two non-coordinating) and one positionally disordered ethanol solvent mol­ecule. The CoII cation is coordinated by two terminal N-bonded thio­cyanate anions and four N-coordinating isonicotinamide ligands, forming a slightly distorted octa­hedron (Fig. 1). Bond lengths [Co—N range: 2.074 (3)–2.185 (2) Å] and angles [N—Co—N range: 88.09 (9)–91.91 (10)° for cis and 177.27 (10)–178.32 (11)° for trans angles] are indicative for a slight distortion and are comparable with those in similar coordination compounds with CoII, thio­cyanate anions and N-bound co-ligands.graphic file with name e-72-01077-scheme1.jpg

Figure 1.

Figure 1

View of the asymmetric unit of the title compound, with atom labelling and displacement ellipsoids drawn at the 50% probability level. The positional disorder of the ethanol mol­ecule is shown by full and open bonds for the two orientations.

Supra­molecular features  

In the crystal structure of the title compound, neighboring complexes are linked into chains extending along the a axis by inter­molecular N—H⋯O hydrogen-bonding inter­actions (Fig. 2, Table 1). These chains are further linked into a three-dimensional network by inter­chain N—H⋯S hydrogen bonding between the thio­cyanate anions and the amide H atoms of neighboring complexes (Fig. 3, Table 1). In this way, two types of channels are formed along the a axis. In the larger channels, the isonicotinamide solvent mol­ecules are embedded whereas the smaller channels are occupied by the disordered ethanol mol­ecules (Figs. 2 and 3). The solvent mol­ecules are linked by O—H⋯O, N—H⋯O and N—H⋯N hydrogen-bonding inter­actions to the the isonicotinamide ligands that form the channels. Weak C—H⋯O and C—H⋯S inter­actions are also observed, consolidating the packing of the crystal structure.

Figure 2.

Figure 2

Crystal structure of the title compound in a view along the a axis. Inter­molecular hydrogen bonding is shown as dashed lines and the second orientation of the disordered ethanol mol­ecule is omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯S1i 0.95 3.03 3.676 (3) 127
C14—H14⋯O31ii 0.95 2.62 3.532 (4) 162
C15—H15⋯O81ii 0.95 2.60 3.454 (7) 149
N12—H12A⋯N51 0.88 2.09 2.936 (4) 160
N12—H12B⋯O31ii 0.88 2.12 2.879 (4) 144
C25—H25⋯O41iii 0.95 2.47 3.100 (4) 124
N22—H22A⋯S2iv 0.88 2.60 3.439 (3) 160
N22—H22B⋯O61v 0.88 2.26 3.005 (4) 142
C32—H32⋯O11vi 0.95 2.47 3.399 (4) 165
N32—H32A⋯N61vii 0.88 2.14 2.965 (4) 156
N32—H32B⋯O11vi 0.88 2.14 2.952 (4) 153
C41—H41⋯O21iv 0.95 2.32 3.113 (4) 140
C42—H42⋯O61iv 0.95 2.63 3.547 (4) 163
N42—H42A⋯S1iii 0.88 2.68 3.523 (3) 161
N42—H42B⋯O61iv 0.88 2.22 3.063 (4) 159
N52—H52A⋯O41viii 0.88 2.09 2.921 (4) 157
N52—H52B⋯O61ii 0.88 2.06 2.882 (4) 155
C62—H62⋯S1ix 0.95 2.89 3.734 (3) 148
N62—H62A⋯O21 0.88 2.03 2.854 (4) 156
N62—H62B⋯O51vi 0.88 1.94 2.775 (4) 159
O71—H71⋯O31ii 0.84 2.20 3.020 (13) 167
O81—H81⋯O11vi 0.84 2.37 2.855 (7) 118
O81—H81⋯N32 0.84 2.58 3.062 (8) 118

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic.

Figure 3.

Figure 3

Crystal structure of the title compound in a view along the b axis. Inter­molecular hydrogen bonding is shown as dashed lines and the second orientation of the disordered ethanol mol­ecule is omitted for clarity.

Database survey  

In the Cambridge Structure Database (Version 5.37, last update 2015; Groom et al., 2016) only five structures of coordination compounds with isonicotinamide and thio­cyanate as ligands are reported: two clathrates of nickel coordination polymers, in which the metal atoms are connected into chains by μ-1,3-bridging thio­cyanate ligands of which one contains 9,10-anthra­quinone and the other pyrene as clathrate mol­ecules (Sekiya et al., 2009). Furthermore, a one-dimensional cadmium 9,10-di­chloro­anthracene-clathrate with bridging μ-1,3-thio­cyanate ligands between the metal atoms is reported (Sekiya & Nishikiori, 2005), as well as a three-dimensional network consisting of cadmium cations with μ-1,3-bridging thio­cyanate ligands (Yang et al., 2001), and finally one Cu coordination polymer in which Cu–NCS sheets are observed (Đaković et al., 2010). In this context we have reported recently on a Zn complex in which the Zn cations are tetra­hedrally coordinated by two terminal N-bonded thio­cyanate anions and two isonicotinamide ligands (Neumann et al., 2016).

Synthesis and crystallization  

Cobalt(II) thio­cyanate and isonicotinamide were obtained from Alfa Aesar and were used without further purification. Single crystals suitable for structure analysis were obtained by the reaction of 26.3 mg Co(NCS)2 (0.15 mmol) with 73.3 mg isonicotinamide (0.6 mmol) in ethanol (1.5 ml) after being allowed to stand for a few days at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C—H, O—H and N—H hydrogen atoms were located in a difference map but were positioned with idealized geometry (methyl and O—H hydrogen atoms were allowed to rotate but not to tip) and were refined with U iso(H) = 1.2U eq(C,N) (1.5 for methyl and O—H hydrogen atoms) using a riding model with C—H = 0.95 Å for aromatic, C—H = 0.98 Å for methyl, N—H = 0.88 Å and O— H = 0.84 Å, respectively. The ethanol mol­ecule was found to be disordered over two sets of sites and was refined with fixed occupation factors of 0.6 and 0.4, respectively.

Table 2. Experimental details.

Crystal data
Chemical formula [Co(NCS)2(C6H6N2O)4]·2C6H6N2O·C2H6O
M r 953.92
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 200
a, b, c (Å) 9.1877 (4), 13.6779 (5), 20.3185 (8)
α, β, γ (°) 104.027 (3), 97.256 (3), 109.576 (3)
V3) 2273.12 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.53
Crystal size (mm) 0.42 × 0.35 × 0.25
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe, 2008)
T min, T max 0.637, 0.805
No. of measured, independent and observed [I > 2σ(I)] reflections 23938, 9885, 8035
R int 0.044
(sin θ/λ)max−1) 0.639
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.054, 0.142, 1.10
No. of reflections 9885
No. of parameters 606
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.75, −0.39

Computer programs: X-AREA (Stoe, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), XP in SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016010951/wm5305sup1.cif

e-72-01077-sup1.cif (817.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016010951/wm5305Isup2.hkl

e-72-01077-Isup2.hkl (784.3KB, hkl)

CCDC reference: 1491089

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Deutsche Forschungsgemeinschaft (project No. NA 720/5–1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

supplementary crystallographic information

Crystal data

[Co(NCS)2(C6H6N2O)4]·2C6H6N2O·C2H6O Z = 2
Mr = 953.92 F(000) = 990
Triclinic, P1 Dx = 1.394 Mg m3
a = 9.1877 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 13.6779 (5) Å Cell parameters from 9885 reflections
c = 20.3185 (8) Å θ = 3.3–54.0°
α = 104.027 (3)° µ = 0.53 mm1
β = 97.256 (3)° T = 200 K
γ = 109.576 (3)° Block, red
V = 2273.12 (17) Å3 0.42 × 0.35 × 0.25 mm

Data collection

Stoe IPDS-2 diffractometer 8035 reflections with I > 2σ(I)
ω scans Rint = 0.044
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe, 2008) θmax = 27.0°, θmin = 1.7°
Tmin = 0.637, Tmax = 0.805 h = −11→10
23938 measured reflections k = −17→17
9885 independent reflections l = −24→25

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0507P)2 + 3.0411P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.001
9885 reflections Δρmax = 0.75 e Å3
606 parameters Δρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co1 0.61592 (5) 0.35492 (3) 0.21691 (2) 0.02592 (11)
N1 0.8459 (3) 0.4542 (2) 0.22065 (14) 0.0336 (6)
C1 0.9652 (4) 0.4826 (2) 0.20375 (15) 0.0304 (6)
S1 1.13121 (10) 0.52353 (9) 0.17835 (5) 0.0467 (2)
N2 0.3879 (3) 0.2543 (2) 0.21571 (14) 0.0361 (6)
C2 0.2534 (4) 0.2022 (2) 0.20567 (15) 0.0307 (6)
S2 0.06525 (11) 0.12699 (8) 0.18989 (5) 0.0497 (2)
N11 0.5978 (3) 0.4880 (2) 0.29563 (13) 0.0297 (5)
C11 0.4652 (4) 0.5085 (3) 0.29031 (16) 0.0357 (7)
H11 0.3771 0.4615 0.2530 0.043*
C12 0.4506 (4) 0.5955 (3) 0.33693 (17) 0.0363 (7)
H12 0.3547 0.6080 0.3310 0.044*
C13 0.5767 (4) 0.6641 (2) 0.39224 (16) 0.0302 (6)
C14 0.7152 (4) 0.6439 (3) 0.39744 (16) 0.0335 (6)
H14 0.8048 0.6895 0.4344 0.040*
C15 0.7213 (4) 0.5563 (2) 0.34796 (16) 0.0316 (6)
H15 0.8175 0.5442 0.3514 0.038*
C16 0.5541 (4) 0.7534 (3) 0.44494 (16) 0.0335 (6)
O11 0.4191 (3) 0.7524 (2) 0.44465 (12) 0.0401 (5)
N12 0.6808 (4) 0.8311 (3) 0.49009 (18) 0.0560 (9)
H12A 0.6701 0.8842 0.5211 0.067*
H12B 0.7755 0.8297 0.4891 0.067*
N21 0.6386 (3) 0.2271 (2) 0.13538 (13) 0.0307 (5)
C21 0.5924 (4) 0.1226 (2) 0.13461 (16) 0.0312 (6)
H21 0.5311 0.1002 0.1665 0.037*
C22 0.6302 (4) 0.0461 (2) 0.08948 (16) 0.0319 (6)
H22 0.5951 −0.0271 0.0906 0.038*
C23 0.7195 (3) 0.0771 (2) 0.04279 (15) 0.0282 (6)
C24 0.7621 (4) 0.1837 (2) 0.04143 (16) 0.0344 (7)
H24 0.8198 0.2074 0.0088 0.041*
C25 0.7195 (4) 0.2552 (2) 0.08825 (16) 0.0346 (7)
H25 0.7494 0.3280 0.0868 0.041*
C26 0.7649 (4) −0.0066 (2) −0.00419 (15) 0.0309 (6)
O21 0.7255 (3) −0.09870 (17) 0.00063 (12) 0.0410 (5)
N22 0.8473 (4) 0.0237 (2) −0.04995 (15) 0.0406 (6)
H22A 0.8752 −0.0233 −0.0781 0.049*
H22B 0.8739 0.0907 −0.0522 0.049*
N31 0.7061 (3) 0.2929 (2) 0.29549 (13) 0.0303 (5)
C31 0.6391 (4) 0.2855 (3) 0.34932 (16) 0.0313 (6)
H31 0.5510 0.3067 0.3519 0.038*
C32 0.6913 (4) 0.2485 (3) 0.40192 (16) 0.0318 (6)
H32 0.6415 0.2460 0.4400 0.038*
C33 0.8176 (4) 0.2152 (2) 0.39785 (15) 0.0300 (6)
C34 0.8853 (4) 0.2197 (3) 0.34056 (17) 0.0365 (7)
H34 0.9702 0.1957 0.3353 0.044*
C35 0.8271 (4) 0.2594 (3) 0.29166 (16) 0.0348 (7)
H35 0.8752 0.2634 0.2531 0.042*
C36 0.8902 (4) 0.1787 (3) 0.45389 (16) 0.0335 (6)
O31 1.0142 (3) 0.1628 (2) 0.44981 (13) 0.0444 (6)
N32 0.8179 (4) 0.1652 (3) 0.50476 (16) 0.0490 (8)
H32A 0.8575 0.1440 0.5379 0.059*
H32B 0.7299 0.1774 0.5056 0.059*
N41 0.5176 (3) 0.4126 (2) 0.13757 (13) 0.0306 (5)
C41 0.3896 (4) 0.3416 (2) 0.08872 (16) 0.0353 (7)
H41 0.3594 0.2664 0.0844 0.042*
C42 0.2986 (4) 0.3719 (3) 0.04405 (16) 0.0346 (7)
H42 0.2092 0.3183 0.0097 0.041*
C43 0.3392 (3) 0.4808 (2) 0.05005 (15) 0.0279 (6)
C44 0.4744 (4) 0.5551 (2) 0.09968 (17) 0.0325 (6)
H44 0.5079 0.6307 0.1046 0.039*
C45 0.5596 (4) 0.5178 (2) 0.14181 (16) 0.0319 (6)
H45 0.6523 0.5694 0.1753 0.038*
C46 0.2421 (4) 0.5236 (3) 0.00764 (15) 0.0313 (6)
O41 0.2731 (3) 0.62182 (19) 0.02170 (13) 0.0428 (6)
N42 0.1222 (3) 0.4499 (2) −0.04437 (15) 0.0390 (6)
H42A 0.0620 0.4713 −0.0701 0.047*
H42B 0.1037 0.3801 −0.0529 0.047*
N51 0.6258 (4) 0.9683 (2) 0.61213 (16) 0.0460 (7)
C51 0.5455 (5) 1.0340 (3) 0.61289 (19) 0.0459 (8)
H51 0.5017 1.0398 0.5698 0.055*
C52 0.5234 (4) 1.0931 (3) 0.67293 (18) 0.0406 (7)
H52 0.4627 1.1370 0.6710 0.049*
C53 0.5905 (4) 1.0883 (3) 0.73626 (17) 0.0344 (6)
C54 0.6730 (4) 1.0196 (3) 0.73642 (19) 0.0397 (7)
H54 0.7194 1.0129 0.7788 0.048*
C55 0.6854 (4) 0.9609 (3) 0.6724 (2) 0.0447 (8)
H55 0.7398 0.9128 0.6722 0.054*
C56 0.5693 (4) 1.1562 (3) 0.80151 (18) 0.0405 (7)
O51 0.4479 (3) 1.1764 (3) 0.79954 (15) 0.0655 (9)
N52 0.6846 (3) 1.1943 (2) 0.85867 (15) 0.0406 (6)
H52A 0.6762 1.2358 0.8973 0.049*
H52B 0.7693 1.1779 0.8578 0.049*
N61 1.0108 (4) −0.1655 (3) 0.36132 (16) 0.0445 (7)
C61 1.0359 (4) −0.2371 (3) 0.3113 (2) 0.0429 (8)
H61 1.0812 −0.2845 0.3245 0.052*
C62 1.0002 (4) −0.2467 (3) 0.24140 (19) 0.0377 (7)
H62 1.0214 −0.2988 0.2078 0.045*
C63 0.9329 (3) −0.1788 (2) 0.22133 (17) 0.0317 (6)
C64 0.9026 (4) −0.1056 (3) 0.27224 (17) 0.0355 (7)
H64 0.8538 −0.0592 0.2602 0.043*
C65 0.9444 (4) −0.1010 (3) 0.34117 (19) 0.0429 (8)
H65 0.9250 −0.0494 0.3759 0.051*
C66 0.9038 (4) −0.1824 (2) 0.14579 (15) 0.0292 (6)
O61 0.9960 (3) −0.20254 (18) 0.10943 (12) 0.0367 (5)
N62 0.7810 (3) −0.1622 (2) 0.12232 (14) 0.0365 (6)
H62A 0.7600 −0.1624 0.0788 0.044*
H62B 0.7194 −0.1484 0.1501 0.044*
C71 0.678 (2) 0.5974 (12) 0.5795 (11) 0.106 (6) 0.4
H71A 0.5657 0.5518 0.5749 0.127* 0.4
H71B 0.7317 0.6140 0.6286 0.127* 0.4
C72 0.742 (3) 0.526 (3) 0.5390 (12) 0.095 (8) 0.4
H72A 0.7252 0.4627 0.5554 0.142* 0.4
H72B 0.6874 0.5028 0.4899 0.142* 0.4
H72C 0.8553 0.5657 0.5442 0.142* 0.4
O71 0.6780 (16) 0.6932 (13) 0.5727 (8) 0.122 (4) 0.4
H71 0.7702 0.7335 0.5731 0.182* 0.4
C81 0.9012 (14) 0.5036 (8) 0.5864 (8) 0.111 (4) 0.6
H81A 1.0100 0.5458 0.5836 0.133* 0.6
H81B 0.8927 0.5336 0.6346 0.133* 0.6
C82 0.802 (2) 0.531 (2) 0.5447 (13) 0.137 (10) 0.6
H82A 0.8318 0.6097 0.5598 0.205* 0.6
H82B 0.8111 0.5068 0.4963 0.205* 0.6
H82C 0.6926 0.4945 0.5478 0.205* 0.6
O81 0.8947 (8) 0.4053 (5) 0.5805 (5) 0.096 (2) 0.6
H81 0.8285 0.3619 0.5439 0.145* 0.6

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0294 (2) 0.02770 (19) 0.02199 (19) 0.01389 (16) 0.00461 (15) 0.00611 (14)
N1 0.0332 (14) 0.0347 (13) 0.0328 (14) 0.0136 (11) 0.0090 (11) 0.0081 (11)
C1 0.0347 (16) 0.0326 (15) 0.0265 (14) 0.0175 (13) 0.0046 (12) 0.0083 (12)
S1 0.0337 (4) 0.0697 (6) 0.0498 (5) 0.0260 (4) 0.0163 (4) 0.0288 (5)
N2 0.0343 (14) 0.0376 (14) 0.0356 (14) 0.0141 (12) 0.0046 (11) 0.0108 (11)
C2 0.0342 (16) 0.0330 (15) 0.0262 (14) 0.0159 (13) 0.0082 (12) 0.0062 (12)
S2 0.0331 (4) 0.0516 (5) 0.0533 (5) 0.0102 (4) 0.0159 (4) 0.0018 (4)
N11 0.0324 (13) 0.0331 (13) 0.0239 (12) 0.0164 (11) 0.0043 (10) 0.0046 (10)
C11 0.0336 (16) 0.0433 (17) 0.0279 (15) 0.0198 (14) 0.0010 (12) 0.0025 (13)
C12 0.0338 (16) 0.0438 (17) 0.0324 (16) 0.0222 (14) 0.0035 (13) 0.0052 (13)
C13 0.0317 (15) 0.0335 (15) 0.0280 (14) 0.0158 (12) 0.0096 (12) 0.0076 (12)
C14 0.0315 (15) 0.0343 (15) 0.0309 (15) 0.0143 (13) 0.0042 (12) 0.0018 (12)
C15 0.0279 (14) 0.0366 (15) 0.0291 (15) 0.0160 (12) 0.0039 (12) 0.0040 (12)
C16 0.0351 (16) 0.0368 (16) 0.0313 (15) 0.0191 (13) 0.0081 (13) 0.0071 (13)
O11 0.0372 (12) 0.0475 (13) 0.0394 (13) 0.0247 (11) 0.0120 (10) 0.0059 (10)
N12 0.0380 (16) 0.0531 (18) 0.059 (2) 0.0232 (15) 0.0022 (14) −0.0179 (15)
N21 0.0387 (14) 0.0302 (12) 0.0260 (12) 0.0180 (11) 0.0053 (10) 0.0077 (10)
C21 0.0348 (15) 0.0316 (15) 0.0303 (15) 0.0142 (12) 0.0100 (12) 0.0114 (12)
C22 0.0349 (15) 0.0271 (14) 0.0331 (15) 0.0111 (12) 0.0062 (13) 0.0098 (12)
C23 0.0326 (15) 0.0275 (13) 0.0221 (13) 0.0129 (12) −0.0001 (11) 0.0043 (11)
C24 0.0494 (18) 0.0315 (15) 0.0247 (14) 0.0163 (14) 0.0112 (13) 0.0099 (12)
C25 0.0534 (19) 0.0260 (14) 0.0271 (15) 0.0166 (14) 0.0117 (14) 0.0095 (12)
C26 0.0344 (15) 0.0293 (14) 0.0258 (14) 0.0125 (12) 0.0018 (12) 0.0047 (11)
O21 0.0643 (16) 0.0288 (11) 0.0333 (12) 0.0224 (11) 0.0129 (11) 0.0078 (9)
N22 0.0535 (17) 0.0324 (13) 0.0403 (16) 0.0196 (13) 0.0216 (13) 0.0089 (12)
N31 0.0322 (13) 0.0379 (13) 0.0251 (12) 0.0176 (11) 0.0065 (10) 0.0110 (10)
C31 0.0301 (15) 0.0414 (16) 0.0276 (15) 0.0181 (13) 0.0084 (12) 0.0123 (12)
C32 0.0330 (15) 0.0416 (16) 0.0261 (14) 0.0173 (13) 0.0089 (12) 0.0140 (12)
C33 0.0306 (14) 0.0342 (15) 0.0263 (14) 0.0144 (12) 0.0052 (12) 0.0084 (12)
C34 0.0385 (17) 0.0498 (19) 0.0305 (16) 0.0278 (15) 0.0095 (13) 0.0117 (14)
C35 0.0370 (16) 0.0507 (18) 0.0258 (15) 0.0248 (15) 0.0125 (12) 0.0133 (13)
C36 0.0348 (16) 0.0392 (16) 0.0290 (15) 0.0186 (13) 0.0046 (12) 0.0096 (13)
O31 0.0434 (13) 0.0684 (16) 0.0370 (13) 0.0367 (13) 0.0098 (10) 0.0210 (12)
N32 0.0450 (17) 0.084 (2) 0.0408 (16) 0.0394 (17) 0.0153 (13) 0.0352 (17)
N41 0.0368 (13) 0.0313 (12) 0.0251 (12) 0.0172 (11) 0.0041 (10) 0.0064 (10)
C41 0.0502 (19) 0.0257 (14) 0.0261 (15) 0.0162 (13) −0.0004 (13) 0.0030 (11)
C42 0.0422 (17) 0.0320 (15) 0.0250 (14) 0.0150 (13) −0.0010 (13) 0.0040 (12)
C43 0.0324 (14) 0.0336 (14) 0.0232 (13) 0.0167 (12) 0.0107 (11) 0.0102 (11)
C44 0.0349 (16) 0.0276 (14) 0.0361 (16) 0.0114 (12) 0.0084 (13) 0.0122 (12)
C45 0.0311 (15) 0.0305 (14) 0.0310 (15) 0.0097 (12) 0.0042 (12) 0.0085 (12)
C46 0.0379 (16) 0.0378 (16) 0.0254 (14) 0.0198 (13) 0.0107 (12) 0.0126 (12)
O41 0.0587 (15) 0.0357 (12) 0.0384 (13) 0.0232 (11) 0.0045 (11) 0.0144 (10)
N42 0.0413 (15) 0.0409 (15) 0.0371 (15) 0.0212 (13) −0.0002 (12) 0.0125 (12)
N51 0.0463 (17) 0.0402 (16) 0.0415 (17) 0.0134 (13) 0.0096 (14) −0.0006 (13)
C51 0.052 (2) 0.048 (2) 0.0357 (18) 0.0201 (17) 0.0089 (16) 0.0080 (15)
C52 0.0428 (18) 0.0433 (18) 0.0354 (17) 0.0198 (15) 0.0057 (14) 0.0079 (14)
C53 0.0294 (15) 0.0380 (16) 0.0328 (16) 0.0112 (13) 0.0090 (12) 0.0070 (13)
C54 0.0361 (17) 0.0373 (17) 0.0421 (18) 0.0120 (14) 0.0060 (14) 0.0097 (14)
C55 0.0404 (18) 0.0334 (17) 0.054 (2) 0.0139 (15) 0.0079 (16) 0.0049 (15)
C56 0.0352 (17) 0.052 (2) 0.0369 (17) 0.0205 (15) 0.0128 (14) 0.0110 (15)
O51 0.0451 (15) 0.109 (3) 0.0438 (15) 0.0458 (17) 0.0086 (12) 0.0024 (16)
N52 0.0380 (15) 0.0519 (17) 0.0300 (14) 0.0213 (13) 0.0050 (12) 0.0045 (12)
N61 0.0411 (16) 0.0533 (17) 0.0388 (16) 0.0142 (14) 0.0039 (13) 0.0217 (14)
C61 0.0440 (19) 0.0446 (19) 0.046 (2) 0.0190 (16) 0.0059 (16) 0.0236 (16)
C62 0.0389 (17) 0.0339 (16) 0.0440 (18) 0.0154 (14) 0.0089 (14) 0.0166 (14)
C63 0.0259 (14) 0.0318 (15) 0.0349 (16) 0.0087 (12) 0.0021 (12) 0.0117 (12)
C64 0.0352 (16) 0.0432 (17) 0.0314 (16) 0.0195 (14) 0.0058 (13) 0.0118 (13)
C65 0.0422 (18) 0.051 (2) 0.0350 (17) 0.0186 (16) 0.0071 (14) 0.0112 (15)
C66 0.0314 (14) 0.0265 (13) 0.0289 (14) 0.0106 (12) 0.0056 (12) 0.0081 (11)
O61 0.0379 (12) 0.0409 (12) 0.0349 (12) 0.0194 (10) 0.0093 (10) 0.0109 (10)
N62 0.0386 (14) 0.0471 (15) 0.0296 (13) 0.0219 (13) 0.0083 (11) 0.0135 (12)
C71 0.125 (14) 0.056 (8) 0.129 (15) 0.016 (9) 0.034 (12) 0.038 (9)
C72 0.12 (2) 0.091 (15) 0.071 (12) 0.022 (16) 0.041 (14) 0.036 (11)
O71 0.108 (9) 0.155 (12) 0.136 (11) 0.059 (9) 0.054 (9) 0.077 (10)
C81 0.091 (7) 0.065 (6) 0.169 (13) 0.017 (5) 0.006 (8) 0.051 (7)
C82 0.096 (13) 0.088 (10) 0.167 (17) −0.029 (9) −0.051 (11) 0.070 (11)
O81 0.064 (4) 0.073 (4) 0.132 (7) 0.014 (3) 0.001 (4) 0.023 (4)

Geometric parameters (Å, º)

Co1—N1 2.074 (3) C41—H41 0.9500
Co1—N2 2.079 (3) C42—C43 1.378 (4)
Co1—N31 2.179 (2) C42—H42 0.9500
Co1—N11 2.181 (2) C43—C44 1.391 (4)
Co1—N41 2.183 (2) C43—C46 1.511 (4)
Co1—N21 2.185 (2) C44—C45 1.384 (4)
N1—C1 1.160 (4) C44—H44 0.9500
C1—S1 1.635 (3) C45—H45 0.9500
N2—C2 1.162 (4) C46—O41 1.227 (4)
C2—S2 1.631 (3) C46—N42 1.338 (4)
N11—C11 1.337 (4) N42—H42A 0.8800
N11—C15 1.339 (4) N42—H42B 0.8800
C11—C12 1.387 (4) N51—C55 1.319 (5)
C11—H11 0.9500 N51—C51 1.338 (5)
C12—C13 1.385 (4) C51—C52 1.370 (5)
C12—H12 0.9500 C51—H51 0.9500
C13—C14 1.387 (4) C52—C53 1.381 (5)
C13—C16 1.508 (4) C52—H52 0.9500
C14—C15 1.388 (4) C53—C54 1.391 (5)
C14—H14 0.9500 C53—C56 1.499 (4)
C15—H15 0.9500 C54—C55 1.393 (5)
C16—O11 1.236 (4) C54—H54 0.9500
C16—N12 1.325 (4) C55—H55 0.9500
N12—H12A 0.8800 C56—O51 1.235 (4)
N12—H12B 0.8800 C56—N52 1.330 (4)
N21—C25 1.336 (4) N52—H52A 0.8800
N21—C21 1.343 (4) N52—H52B 0.8800
C21—C22 1.384 (4) N61—C61 1.333 (5)
C21—H21 0.9500 N61—C65 1.339 (5)
C22—C23 1.382 (4) C61—C62 1.379 (5)
C22—H22 0.9500 C61—H61 0.9500
C23—C24 1.387 (4) C62—C63 1.384 (4)
C23—C26 1.512 (4) C62—H62 0.9500
C24—C25 1.383 (4) C63—C64 1.381 (5)
C24—H24 0.9500 C63—C66 1.510 (4)
C25—H25 0.9500 C64—C65 1.385 (5)
C26—O21 1.221 (4) C64—H64 0.9500
C26—N22 1.328 (4) C65—H65 0.9500
N22—H22A 0.8800 C66—O61 1.247 (4)
N22—H22B 0.8800 C66—N62 1.309 (4)
N31—C31 1.330 (4) N62—H62A 0.8800
N31—C35 1.341 (4) N62—H62B 0.8800
C31—C32 1.388 (4) C71—O71 1.351 (19)
C31—H31 0.9500 C71—C72 1.44 (4)
C32—C33 1.386 (4) C71—H71A 0.9900
C32—H32 0.9500 C71—H71B 0.9900
C33—C34 1.392 (4) C72—H72A 0.9800
C33—C36 1.515 (4) C72—H72B 0.9800
C34—C35 1.375 (4) C72—H72C 0.9800
C34—H34 0.9500 O71—H71 0.8400
C35—H35 0.9500 C81—O81 1.300 (11)
C36—O31 1.238 (4) C81—C82 1.37 (2)
C36—N32 1.314 (4) C81—H81A 0.9900
N32—H32A 0.8800 C81—H81B 0.9900
N32—H32B 0.8800 C82—H82A 0.9800
N41—C41 1.336 (4) C82—H82B 0.9800
N41—C45 1.336 (4) C82—H82C 0.9800
C41—C42 1.385 (4) O81—H81 0.8400
N1—Co1—N2 178.32 (11) C45—N41—Co1 123.6 (2)
N1—Co1—N31 90.01 (10) N41—C41—C42 123.4 (3)
N2—Co1—N31 88.33 (10) N41—C41—H41 118.3
N1—Co1—N11 89.42 (10) C42—C41—H41 118.3
N2—Co1—N11 90.36 (10) C43—C42—C41 119.2 (3)
N31—Co1—N11 92.30 (9) C43—C42—H42 120.4
N1—Co1—N41 91.91 (10) C41—C42—H42 120.4
N2—Co1—N41 89.74 (10) C42—C43—C44 117.8 (3)
N31—Co1—N41 178.04 (10) C42—C43—C46 123.6 (3)
N11—Co1—N41 88.09 (9) C44—C43—C46 118.5 (3)
N1—Co1—N21 88.74 (10) C45—C44—C43 119.3 (3)
N2—Co1—N21 91.53 (10) C45—C44—H44 120.4
N31—Co1—N21 89.72 (9) C43—C44—H44 120.4
N11—Co1—N21 177.27 (10) N41—C45—C44 123.0 (3)
N41—Co1—N21 89.95 (9) N41—C45—H45 118.5
C1—N1—Co1 158.0 (2) C44—C45—H45 118.5
N1—C1—S1 178.5 (3) O41—C46—N42 122.7 (3)
C2—N2—Co1 169.1 (3) O41—C46—C43 120.3 (3)
N2—C2—S2 178.5 (3) N42—C46—C43 117.0 (3)
C11—N11—C15 117.6 (3) C46—N42—H42A 120.0
C11—N11—Co1 120.6 (2) C46—N42—H42B 120.0
C15—N11—Co1 121.68 (19) H42A—N42—H42B 120.0
N11—C11—C12 122.8 (3) C55—N51—C51 117.6 (3)
N11—C11—H11 118.6 N51—C51—C52 123.1 (3)
C12—C11—H11 118.6 N51—C51—H51 118.4
C13—C12—C11 119.5 (3) C52—C51—H51 118.4
C13—C12—H12 120.2 C51—C52—C53 119.2 (3)
C11—C12—H12 120.2 C51—C52—H52 120.4
C12—C13—C14 117.9 (3) C53—C52—H52 120.4
C12—C13—C16 118.5 (3) C52—C53—C54 118.4 (3)
C14—C13—C16 123.6 (3) C52—C53—C56 118.5 (3)
C13—C14—C15 119.1 (3) C54—C53—C56 123.1 (3)
C13—C14—H14 120.4 C53—C54—C55 117.8 (3)
C15—C14—H14 120.4 C53—C54—H54 121.1
N11—C15—C14 123.1 (3) C55—C54—H54 121.1
N11—C15—H15 118.5 N51—C55—C54 123.7 (3)
C14—C15—H15 118.5 N51—C55—H55 118.1
O11—C16—N12 122.0 (3) C54—C55—H55 118.1
O11—C16—C13 119.4 (3) O51—C56—N52 122.9 (3)
N12—C16—C13 118.6 (3) O51—C56—C53 118.8 (3)
C16—N12—H12A 120.0 N52—C56—C53 118.2 (3)
C16—N12—H12B 120.0 C56—N52—H52A 120.0
H12A—N12—H12B 120.0 C56—N52—H52B 120.0
C25—N21—C21 117.2 (3) H52A—N52—H52B 120.0
C25—N21—Co1 118.8 (2) C61—N61—C65 116.8 (3)
C21—N21—Co1 123.5 (2) N61—C61—C62 124.0 (3)
N21—C21—C22 122.9 (3) N61—C61—H61 118.0
N21—C21—H21 118.5 C62—C61—H61 118.0
C22—C21—H21 118.5 C61—C62—C63 118.6 (3)
C23—C22—C21 119.4 (3) C61—C62—H62 120.7
C23—C22—H22 120.3 C63—C62—H62 120.7
C21—C22—H22 120.3 C64—C63—C62 118.3 (3)
C22—C23—C24 117.9 (3) C64—C63—C66 122.2 (3)
C22—C23—C26 118.7 (3) C62—C63—C66 119.4 (3)
C24—C23—C26 123.4 (3) C63—C64—C65 119.0 (3)
C25—C24—C23 119.0 (3) C63—C64—H64 120.5
C25—C24—H24 120.5 C65—C64—H64 120.5
C23—C24—H24 120.5 N61—C65—C64 123.3 (3)
N21—C25—C24 123.5 (3) N61—C65—H65 118.4
N21—C25—H25 118.3 C64—C65—H65 118.4
C24—C25—H25 118.3 O61—C66—N62 123.4 (3)
O21—C26—N22 122.2 (3) O61—C66—C63 119.9 (3)
O21—C26—C23 119.9 (3) N62—C66—C63 116.7 (3)
N22—C26—C23 117.9 (3) C66—N62—H62A 120.0
C26—N22—H22A 120.0 C66—N62—H62B 120.0
C26—N22—H22B 120.0 H62A—N62—H62B 120.0
H22A—N22—H22B 120.0 O71—C71—C72 127.2 (19)
C31—N31—C35 117.4 (3) O71—C71—H71A 105.5
C31—N31—Co1 119.99 (19) C72—C71—H71A 105.5
C35—N31—Co1 122.6 (2) O71—C71—H71B 105.5
N31—C31—C32 123.3 (3) C72—C71—H71B 105.5
N31—C31—H31 118.3 H71A—C71—H71B 106.1
C32—C31—H31 118.3 C71—C72—H72A 109.5
C33—C32—C31 118.8 (3) C71—C72—H72B 109.5
C33—C32—H32 120.6 H72A—C72—H72B 109.5
C31—C32—H32 120.6 C71—C72—H72C 109.5
C32—C33—C34 118.2 (3) H72A—C72—H72C 109.5
C32—C33—C36 123.5 (3) H72B—C72—H72C 109.5
C34—C33—C36 118.3 (3) C71—O71—H71 109.5
C35—C34—C33 118.9 (3) O81—C81—C82 125.4 (14)
C35—C34—H34 120.6 O81—C81—H81A 106.0
C33—C34—H34 120.6 C82—C81—H81A 106.0
N31—C35—C34 123.4 (3) O81—C81—H81B 106.0
N31—C35—H35 118.3 C82—C81—H81B 106.0
C34—C35—H35 118.3 H81A—C81—H81B 106.3
O31—C36—N32 123.0 (3) C81—C82—H82A 109.5
O31—C36—C33 118.8 (3) C81—C82—H82B 109.5
N32—C36—C33 118.2 (3) H82A—C82—H82B 109.5
C36—N32—H32A 120.0 C81—C82—H82C 109.5
C36—N32—H32B 120.0 H82A—C82—H82C 109.5
H32A—N32—H32B 120.0 H82B—C82—H82C 109.5
C41—N41—C45 117.3 (3) C81—O81—H81 109.5
C41—N41—Co1 118.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11···S1i 0.95 3.03 3.676 (3) 127
C14—H14···O31ii 0.95 2.62 3.532 (4) 162
C15—H15···O81ii 0.95 2.60 3.454 (7) 149
N12—H12A···N51 0.88 2.09 2.936 (4) 160
N12—H12B···O31ii 0.88 2.12 2.879 (4) 144
C25—H25···O41iii 0.95 2.47 3.100 (4) 124
N22—H22A···S2iv 0.88 2.60 3.439 (3) 160
N22—H22B···O61v 0.88 2.26 3.005 (4) 142
C32—H32···O11vi 0.95 2.47 3.399 (4) 165
N32—H32A···N61vii 0.88 2.14 2.965 (4) 156
N32—H32B···O11vi 0.88 2.14 2.952 (4) 153
C41—H41···O21iv 0.95 2.32 3.113 (4) 140
C42—H42···O61iv 0.95 2.63 3.547 (4) 163
N42—H42A···S1iii 0.88 2.68 3.523 (3) 161
N42—H42B···O61iv 0.88 2.22 3.063 (4) 159
N52—H52A···O41viii 0.88 2.09 2.921 (4) 157
N52—H52B···O61ii 0.88 2.06 2.882 (4) 155
C62—H62···S1ix 0.95 2.89 3.734 (3) 148
N62—H62A···O21 0.88 2.03 2.854 (4) 156
N62—H62B···O51vi 0.88 1.94 2.775 (4) 159
O71—H71···O31ii 0.84 2.20 3.020 (13) 167
O81—H81···O11vi 0.84 2.37 2.855 (7) 118
O81—H81···N32 0.84 2.58 3.062 (8) 118

Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) −x+1, −y, −z; (v) −x+2, −y, −z; (vi) −x+1, −y+1, −z+1; (vii) −x+2, −y, −z+1; (viii) −x+1, −y+2, −z+1; (ix) x, y−1, z.

References

  1. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Đaković, M., Jagličić, Z., Kozlevčar, B. & Popović, Z. (2010). Polyhedron, 29, 1910–1917.
  3. Gao, E.-Q., Liu, P.-P., Wang, Y.-Q., Yue, Q. & Wang, Q.-L. (2009). Chem. Eur. J. 15, 1217–1226. [DOI] [PubMed]
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Ma, Y., Zhang, J. Y., Cheng, A.-L., Sun, Q., Gao, E.-Q. & Liu, C.-M. (2009). Inorg. Chem. 48, 6142–6151. [DOI] [PubMed]
  6. Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.
  7. Neumann, T., Jess, I. & Näther, C. (2016). Acta Cryst. E72, 922–925. [DOI] [PMC free article] [PubMed]
  8. Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.
  9. Sekiya, R. & Nishikiori, S. (2005). Chem. Lett. 34, 1076–1077.
  10. Sekiya, R., Nishikiori, S. & Kuroda, R. (2009). CrystEngComm, 11, 2251–2253.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
  14. Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342. [DOI] [PubMed]
  15. Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893–2901. [DOI] [PubMed]
  16. Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015b). Eur. J. Inorg. Chem. pp. 3236–3245.
  17. Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015c). Dalton Trans. 44, 14149–14158. [DOI] [PubMed]
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  19. Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014). Inorg. Chem. 53, 8298–8310. [DOI] [PubMed]
  20. Yang, G., Zhu, H.-G., Liang, B.-H. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 580–585.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016010951/wm5305sup1.cif

e-72-01077-sup1.cif (817.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016010951/wm5305Isup2.hkl

e-72-01077-Isup2.hkl (784.3KB, hkl)

CCDC reference: 1491089

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES