Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jul 12;72(Pt 8):1108–1112. doi: 10.1107/S2056989016011002

Crystal structures of three substituted 3-aryl-2-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-ones

Hemant P Yennawar a, David J Coyle b, Duncan J Noble b, Ziwei Yang b, Lee J Silverberg b,*
PMCID: PMC4971851  PMID: 27536392

The crystal structures of three closely related benzo­thia­zinone structures are reported. All three are conformationally similar having screw-boat puckering in the thia­zine ring and C—H⋯π-type inter­molecular inter­actions in the crystals.

Keywords: crystal structure, benzo­thia­zinones, screw-boat thia­zine pucker, aromatic ring inter­actions

Abstract

Three ring-substituted 3-aryl analogs of 2-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one, namely 3-(4-meth­oxy­phen­yl)-2-phenyl-4H-1,3-benzo­thia­zin-4-one, C21H17NO2S, (I), 2-phenyl-3-[4-(tri­fluoro­meth­yl)phen­yl]-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one toluene hemisolvate, C21H14F3NOS·0.5C7H8, (II), and 3-(3-bromo­phen­yl)-2-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one toluene hemisolvate, C20H14BrNOS·0.5C7H8, (III), were synthesized and their crystal structures determined. The hemisolvates differ in that in (II), the asymmetric unit comprises two molecules of the benzo­thia­zinone compound and a toluene solvent mol­ecule, whereas in (III), the unit comprises one benzo­thia­zinone mol­ecule and a half-occupancy toluene solvent mol­ecule. All crystals are of racemic mixtures of the chiral 2-C atom of the thia­zine moiety, which in all structures has a screw-boat puckering, with the puckering amplitude values within the range 0.575–0.603 Å. In all three structures, the benzene plane of the benzo­thia­zine system makes a dihedral angle in the range 78.60 (5) to 98.40 (5)° with the unsubstituted benzene plane and in the range 70.50 (1) to 121.00 (5)° with the substituted benzene plane. The CF3 substituent group in one of the mol­ecules of (II) shows positional disorder, with an occupancy ratio of 0.57 (3):0.43 (3). In the crystals of (I) and (II), weak inter­molecular C—H⋯O inter­actions are present, giving in (I), mol­ecules arranged in a plane parallel to (010), and in (II), chains along a. In addition, all three structures show weak C—H⋯π inter­actions involving various aromatic rings.

Chemical context  

We have previously reported the crystal structures of 2,3-diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one (Yennawar et al., 2014) and three 2-aryl-3-phenyl-2,3-di­hydro-4H-1,3-benzo­­thia­zin-4-ones (Yennawar et al., 2013, 2015). In the pre­sent communication, we report the synthesis and crystal structures of three ring-substituted 3-aryl-2-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-ones, namely the 4-meth­oxy­phenyl com­pound, (I), the 4-(tri­fluoro­meth­yl)phenyl com­pound as the toluene hemisolvate, (II), and the 4-bromo­phenyl compound as the toluene hemisolvate, (III). However, (II) and (III) differ in that the asymmetric unit of (II) comprises two independent benzo­thia­zinone mol­ecules and one toluene solvent mol­ecule, while that of (III) comprises one benzo­thia­zinone mol­ecule and a half-occupancy toluene solvent mol­ecule. Each compound has been synthesized using the same T3P/pyridine (T3P is 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane 2,4,6-trioxide) method that was used for the preparation of the previously mentioned analogous compounds (Yennawar et al., 2013, 2014, 2015).graphic file with name e-72-01108-scheme1.jpg

Structural commentary  

The three benzo­thia­zinones (Figs. 1–3 ) exhibit fairly similar conformations. In all three, the thia­zine ring pucker is screw-boat, with θ between 63.0 and 67.1°, and puckering amplitudes within the range 0.575–0.603 Å. The inter­planar angle between the benzene ring of the benzo­thia­zine system and the substituent benzene rings at the 2-position are 82.68 (6)° in (I), 95.69 (5) and 78.10 (5)° in (II), and 98.37 (1)° in (III). Those with the benzene rings at the 3-position are 59.10 (6)° in (I), 70.56 (5) and 72.26 (5)° in (II), and 78.66 (1)° in (III). The CF3 substituent group in one of the mol­ecules of (II) shows positional disorder, with an occupancy ratio of 0.57 (3):0.43 (3).

Figure 1.

Figure 1

The mol­ecular conformation and atom-numbering scheme for (I), with non-H atoms shown as 50% probability displacement ellipsoids.

Figure 2.

Figure 2

The mol­ecular conformation and atom-numbering scheme for (II), with non-H atoms shown as 50% probability displacement ellipsoids. The minor component of the disordered CF3 group is not shown.

Figure 3.

Figure 3

The mol­ecular conformation and atom-numbering scheme for (III), with non-H atoms shown as 50% probability ellipsoids. The partial-occupancy disordered toluene solvent mol­ecule has a site occupancy of 0.50.

Supra­molecular features  

In (I) and (II), weak inter­molecular C—H⋯O inter­actions are observed (Tables 1 and 2, respectively), giving in (I), mol­ecules arranged in a plane parallel to (010) (Fig. 4), and in (II), chains along the a-axis direction (Fig. 5). The crystals also feature T-type C—H⋯π inter­actions (Tables 1–3 ), as analyzed using PLATON (Spek, 2009). In (I), a weak C—H⋯Cg(π ring) inter­action of 3.8068 (10) Å is present with an inter­acting angle of 148°. In (II), the toluene mol­ecule participates in tilted-T-type inter­actions by placing itself obliquely between phenyl rings of the two enanti­omers, with C—H⋯Cg(toluene) distances of 3.5916 (7) and 3.6009 (7) Å, with inter­acting angles of 145 and 147°, respectively. In (III), two C—H⋯π inter­actions, one between the thia­zine ring and the toluene solvent mol­ecule and the other between the fused benzene ring and the 2-phenyl ring, have C—H⋯Cg distances of 3.5802 (6) and 3.6823 (6) Å, with inter­acting angles of 156 and 153°, respectively (Fig. 6). Structure (I) also shows a very weak parallel-displaced π–π inter­action between symmetry-related benzene rings, with an inter-centroid (Cg⋯Cg) distance of 3.977 (1) Å and an inter­planar angle of 8°.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

CgX = center of gravity of ring X; D—H⋯CgX = angle of the D—H bond with the π plane

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.59 3.447 (2) 154
C5—H5⋯O2ii 0.93 2.46 3.387 (2) 173
C21—H21ACg4iii 0.96 2.96 3.8068 (10) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg X = center of gravity of ring X; D—H⋯CgX = angle of the D—H bond with the π plane

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2 0.98 2.25 3.2053 (7) 165
C22—H22⋯O1i 0.98 2.34 3.3140 (7) 171
C17—H17⋯Cg9 0.93 2.79 3.5916 (7) 145
C38—H38⋯Cg9ii 0.93 2.78 3.6009 (7) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

The crystal packing of (I) in the unit cell, viewed along b, showing C—H⋯O hydrogen bonds as dashed lines.

Figure 5.

Figure 5

The crystal packing of (II) in the unit cell, viewed along b, showing C—H⋯O hydrogen bonds as dashed lines.

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

CgX = center of gravity of ring X; D—H⋯CgX = angle of the D—H bond with the π plane

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cg5 0.98 2.66 3.5802 (6) 156
C6—H6⋯Cg3i 0.93 2.83 3.6823 (6) 153

Symmetry code: (i) Inline graphic.

Figure 6.

Figure 6

A perspective view of the crystal packing of (III), with the half-occupancy toluene solvent mol­ecules shown as dashed bonds.

Database survey  

The three structures reported here and four previously reported analogous structures (Yennawar et al., 2013, 2014, 2015) have very similar screw-boat puckering for the thia­zine ring. Among the seven crystal structures, the variation in the inter­planar angles between the benzene ring of the benzo­thia­zine moiety and the two substituent benzene rings at positions 2 and 3 lie within 26 and 30°, respectively. A structure for 2-(5-methyl­thio­phen-2-yl)-3-phenyl-2,3-di­hydro­quin­az­olin-4(1H)-one has been reported in a patent application (Atwood et al., 2015).

Synthesis and crystallization  

A two-necked 25 ml round-bottomed flask was oven-dried, cooled under N2 and charged with a stir bar and an N-aryl-C-phenylimine (6 mmol). Tetra­hydro­furan or 2-methyl­tetra­hydro­furan (2.3 ml) was added, the solid dissolved and the solution stirred. Pyridine (1.95 ml, 24 mmol) was added, followed by thio­salicylic acid (0.93 g, 6 mmol). Finally, 2,4,6-tri­propyl-1,3,5,2,4,6-trioxatri­phospho­rinane 2,4,6-tri­ox­ide (T3P) in 2-methyl­tetra­hydro­furan (50 wt%, 7.3 ml, 12 mmol) was added. The mixture was stirred at room temperature and the reaction was followed using thin-layer chromatography. The mixture was then poured into a separatory funnel and di­chloro­methane and distilled water were added. The layers were separated and the aqueous layer was then extracted twice with di­chloro­methane. The organics were combined and washed with saturated sodium bicarbonate and then saturated sodium chloride. The organic extract was dried over sodium sulfate and concentrated under vacuum. The crude product was chromatographed on 30 g of flash silica gel using mixtures of ethyl acetate and hexa­nes, and then further purified as indicated below.

Compound (I) was recrystallized from ethanol solution to give yellow crystals (yield 0.72 g, 34.6%; m.p. 365–369 K). R F = 0.52 (50% ethyl acetate/hexa­nes). Colorless block-shaped crystals suitable for the X-ray analysis were grown by slow evaporation from ethanol solution.

Compound (II) was recrystallized from methyl­ene chloride/hexa­nes to give yellow crystals (yield 0.5639 g, 24.4%; m.p. 404–406 K). R F = 0.56 (30% ethyl acetate/hexa­nes solution). Colorless needle-shaped crystals suitable for the X-ray analysis were grown by slow evaporation from toluene solution.

Compound (III) was triturated with hexa­nes solution to give a solid (0.7242 g) and then recrystallized from toluene/hexa­nes to give white crystals (yield 0.3544 g, 14.5%; m.p.: 358–359 K). R F = 0.39 (20% ethyl acetate/hexa­nes). A second crop of 0.30 g (12.7%) was obtained by slow evaporation of the mother liquor, giving colorless blocks suitable for the X-ray analysis.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. In the refinement of (II), the two mol­ecules in the asymmetric unit were restrained using the SAME command in SHELXL2014 (Sheldrick, 2015). One of the mol­ecules shows positional disorder in the –CF3 group, with the occupancy ratio refining to 0.57 (3):0.43 (3). We tried to address the high R values (relative to R int) by looking for twinning and using restraints but we have had no success in achieving respectable R values. In (III), the disordered partial toluene mol­ecule was refined with a site-occupancy factor determined as 0.50 and with positional constraints (AFIX 6). In all three compounds, the H atoms were placed geometrically and allowed to ride on the C atoms during refinement, with C—H distances of 0.98 (methine), 0.96 (meth­yl) or 0.93 Å (aromatic) and with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) otherwise.

Table 4. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C21H17NO2S 2C21H14F3NOS·C7H8 2C20H14BrNOS·C7H8
M r 347.42 862.92 884.72
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 298 298 298
a, b, c (Å) 17.820 (4), 11.016 (3), 17.890 (4) 11.953 (2), 14.516 (3), 24.546 (5) 15.736 (2), 9.3530 (15), 27.259 (4)
β (°) 98.385 (5) 101.024 (4) 99.560 (3)
V3) 3474.4 (15) 4180.5 (14) 3956.2 (10)
Z 8 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.20 0.20 2.20
Crystal size (mm) 0.26 × 0.24 × 0.12 0.29 × 0.09 × 0.07 0.21 × 0.17 × 0.10
 
Data collection
Diffractometer Bruker CCD area-detector Bruker CCD area-detector Bruker CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2001) Multi-scan (SADABS; Bruker, 2001) Multi-scan (SADABS; Bruker, 2001)
T min, T max 0.940, 0.986 0.592, 0.920 0.103, 0.901
No. of measured, independent and observed reflections 15005, 4284, 3414 [I > 2σ(I)] 39335, 10359, 8329 [I > 2σ(I)] 18289, 4903, 2424 [I > 2σ(I)]
R int 0.024 0.052 0.064
(sin θ/λ)max−1) 0.666 0.668 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.125, 1.05 0.133, 0.240, 1.31 0.049, 0.153, 0.79
No. of reflections 4284 10359 4903
No. of parameters 227 580 266
No. of restraints 0 74 186
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.37 0.48, −0.34 0.73, −0.71

Computer programs: SMART and SAINT (Bruker, 2001), SHELXS97 and SHELXL97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) 1, II, III, I. DOI: 10.1107/S2056989016011002/zs2362sup1.cif

e-72-01108-sup1.cif (96KB, cif)

Supporting information file. DOI: 10.1107/S2056989016011002/zs2362Isup2.cml

Supporting information file. DOI: 10.1107/S2056989016011002/zs2362IIsup3.cml

Supporting information file. DOI: 10.1107/S2056989016011002/zs2362IIIsup4.cml

CCDC references: 1491202, 1491201, 1491200

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank SP Controls, Inc. for the summer support of DJC, Euticals for the gift of T3P in 2-methyl­tetra­hydro­furan, Penn State Schuylkill for financial support, and NSF funding (CHEM-0131112) for the X-ray diffractometer.

supplementary crystallographic information

Crystal data

2C20H14BrNOS·C7H8 Dx = 1.485 Mg m3
Mr = 884.72 Melting point = 358–359 K
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 15.736 (2) Å Cell parameters from 3326 reflections
b = 9.3530 (15) Å θ = 2.5–25.0°
c = 27.259 (4) Å µ = 2.20 mm1
β = 99.560 (3)° T = 298 K
V = 3956.2 (10) Å3 Block, colorless
Z = 4 0.21 × 0.17 × 0.10 mm
F(000) = 1800

Data collection

Bruker CCD area-detector diffractometer 2424 reflections with I > 2σ(I)
phi and ω scans Rint = 0.064
Absorption correction: multi-scan (SADABS; Bruker, 2001) θmax = 28.3°, θmin = 2.5°
Tmin = 0.103, Tmax = 0.901 h = −20→20
18289 measured reflections k = −12→12
4903 independent reflections l = −36→36

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
S = 0.79 (Δ/σ)max < 0.001
4903 reflections Δρmax = 0.73 e Å3
266 parameters Δρmin = −0.71 e Å3
186 restraints

Special details

Experimental. Absorption correction: SADABS was used for absorption correction. R(int) was 0.2680 before and 0.0355 after correction. The Ratio of minimum to maximum transmission is 0.1027. The λ/2 correction factor is 0.0015. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.45074 (3) 0.27453 (5) 0.01191 (2) 0.0874 (2)
C1 0.3189 (2) −0.2500 (3) −0.12554 (12) 0.0471 (8)
H1 0.2798 −0.2262 −0.1023 0.057*
C2 0.4549 (2) −0.1391 (3) −0.14162 (11) 0.0479 (8)
C3 0.4821 (2) −0.2827 (3) −0.15744 (12) 0.0506 (8)
C4 0.4518 (2) −0.4113 (3) −0.14088 (11) 0.0540 (9)
C5 0.4858 (3) −0.5405 (4) −0.15463 (15) 0.0736 (12)
H5 0.4662 −0.6269 −0.1438 0.088*
C6 0.5487 (3) −0.5386 (5) −0.18431 (16) 0.0840 (14)
H6 0.5723 −0.6246 −0.1927 0.101*
C7 0.5774 (3) −0.4129 (5) −0.20176 (15) 0.0766 (12)
H7 0.6178 −0.4141 −0.2231 0.092*
C8 0.5453 (2) −0.2859 (4) −0.18817 (13) 0.0613 (9)
H8 0.5657 −0.2006 −0.1994 0.074*
C9 0.2622 (2) −0.2733 (3) −0.17542 (11) 0.0441 (7)
C10 0.2728 (2) −0.1978 (4) −0.21777 (12) 0.0551 (9)
H10 0.3176 −0.1322 −0.2164 0.066*
C11 0.2169 (3) −0.2193 (4) −0.26239 (14) 0.0650 (10)
H11 0.2250 −0.1686 −0.2906 0.078*
C12 0.1505 (3) −0.3137 (4) −0.26511 (14) 0.0653 (10)
H12 0.1139 −0.3288 −0.2951 0.078*
C13 0.1381 (2) −0.3865 (3) −0.22331 (15) 0.0646 (10)
H13 0.0915 −0.4485 −0.2247 0.078*
C14 0.1942 (2) −0.3683 (3) −0.17905 (13) 0.0565 (9)
H14 0.1861 −0.4209 −0.1512 0.068*
C15 0.3547 (2) 0.0010 (3) −0.10271 (10) 0.0444 (7)
C16 0.2748 (2) 0.0582 (4) −0.11998 (12) 0.0605 (9)
H16 0.2388 0.0144 −0.1462 0.073*
C17 0.2477 (3) 0.1802 (4) −0.09865 (14) 0.0684 (11)
H17 0.1940 0.2192 −0.1107 0.082*
C18 0.3005 (3) 0.2443 (3) −0.05941 (14) 0.0602 (10)
H18 0.2825 0.3262 −0.0447 0.072*
C19 0.3790 (2) 0.1866 (3) −0.04242 (12) 0.0519 (8)
C20 0.4081 (2) 0.0654 (3) −0.06351 (11) 0.0498 (8)
H20 0.4624 0.0280 −0.0516 0.060*
N1 0.37987 (17) −0.1309 (2) −0.12306 (9) 0.0436 (6)
O1 0.49900 (16) −0.0328 (3) −0.14536 (9) 0.0642 (7)
S1 0.37419 (7) −0.41236 (9) −0.10170 (3) 0.0632 (3)
C21 0.3612 (7) −0.228 (2) 0.0506 (4) 0.146 (15) 0.5
H21A 0.4040 −0.2957 0.0440 0.219* 0.5
H21B 0.3479 −0.2455 0.0832 0.219* 0.5
H21C 0.3831 −0.1330 0.0489 0.219* 0.5
C22 0.2809 (6) −0.2458 (12) 0.0125 (3) 0.135 (7) 0.5
C23 0.2341 (8) −0.1264 (10) −0.0081 (4) 0.123 (8) 0.5
H23 0.2537 −0.0351 0.0015 0.147* 0.5
C24 0.1585 (7) −0.1422 (11) −0.0426 (4) 0.145 (9) 0.5
H24 0.1283 −0.0618 −0.0558 0.174* 0.5
C25 0.1282 (5) −0.2785 (13) −0.0573 (3) 0.160 (14) 0.5
H25 0.0779 −0.2893 −0.0803 0.192* 0.5
C26 0.1743 (6) −0.3985 (10) −0.0374 (3) 0.086 (3) 0.5
H26 0.1546 −0.4896 −0.0470 0.103* 0.5
C27 0.2498 (6) −0.3820 (10) −0.0028 (3) 0.105 (6) 0.5
H27 0.2800 −0.4626 0.0102 0.125* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0933 (4) 0.0782 (3) 0.0831 (3) 0.0078 (2) −0.0077 (2) −0.0405 (2)
C1 0.054 (2) 0.0439 (17) 0.0465 (18) −0.0039 (14) 0.0166 (15) −0.0027 (13)
C2 0.055 (2) 0.0477 (18) 0.0418 (17) 0.0015 (16) 0.0104 (15) −0.0051 (13)
C3 0.050 (2) 0.0543 (18) 0.0451 (18) 0.0068 (15) −0.0007 (15) −0.0095 (14)
C4 0.058 (2) 0.0494 (18) 0.0483 (18) 0.0078 (16) −0.0085 (15) −0.0059 (14)
C5 0.077 (3) 0.050 (2) 0.083 (3) 0.0155 (19) −0.017 (2) −0.0109 (18)
C6 0.076 (3) 0.082 (3) 0.086 (3) 0.043 (3) −0.010 (2) −0.031 (2)
C7 0.063 (3) 0.099 (3) 0.064 (2) 0.026 (2) −0.0003 (19) −0.021 (2)
C8 0.050 (2) 0.080 (2) 0.053 (2) 0.0138 (19) 0.0033 (17) −0.0137 (17)
C9 0.050 (2) 0.0359 (14) 0.0486 (18) 0.0026 (14) 0.0144 (15) −0.0056 (12)
C10 0.056 (2) 0.0550 (19) 0.055 (2) −0.0074 (16) 0.0098 (17) −0.0003 (15)
C11 0.070 (3) 0.070 (2) 0.054 (2) 0.003 (2) 0.0094 (19) −0.0010 (17)
C12 0.067 (3) 0.056 (2) 0.067 (2) 0.009 (2) −0.0057 (19) −0.0172 (18)
C13 0.056 (3) 0.0447 (18) 0.091 (3) −0.0053 (17) 0.004 (2) −0.0168 (19)
C14 0.058 (2) 0.0423 (17) 0.070 (2) −0.0031 (16) 0.0157 (18) −0.0022 (15)
C15 0.056 (2) 0.0394 (15) 0.0404 (16) −0.0004 (14) 0.0144 (15) −0.0006 (12)
C16 0.062 (2) 0.062 (2) 0.054 (2) 0.0100 (18) −0.0033 (17) −0.0125 (16)
C17 0.065 (3) 0.066 (2) 0.069 (2) 0.024 (2) −0.0027 (19) −0.0134 (19)
C18 0.075 (3) 0.0435 (18) 0.064 (2) 0.0102 (17) 0.015 (2) −0.0054 (15)
C19 0.063 (2) 0.0442 (16) 0.0478 (18) 0.0006 (16) 0.0085 (16) −0.0081 (14)
C20 0.054 (2) 0.0458 (17) 0.0496 (18) 0.0016 (15) 0.0098 (15) −0.0043 (14)
N1 0.0467 (17) 0.0403 (13) 0.0457 (14) −0.0042 (11) 0.0132 (12) −0.0079 (11)
O1 0.0639 (17) 0.0552 (14) 0.0797 (16) −0.0133 (12) 0.0304 (13) −0.0105 (12)
S1 0.0802 (7) 0.0477 (5) 0.0597 (5) −0.0038 (4) 0.0061 (5) 0.0101 (4)
C21 0.062 (11) 0.31 (5) 0.074 (10) −0.006 (17) 0.029 (9) 0.029 (15)
C22 0.131 (17) 0.196 (15) 0.104 (13) −0.034 (15) 0.096 (13) −0.052 (12)
C23 0.147 (16) 0.109 (14) 0.143 (13) −0.016 (13) 0.118 (12) −0.049 (13)
C24 0.19 (2) 0.097 (10) 0.18 (2) 0.028 (11) 0.128 (17) 0.041 (11)
C25 0.120 (17) 0.26 (4) 0.123 (15) −0.085 (18) 0.076 (12) −0.080 (18)
C26 0.088 (8) 0.094 (7) 0.084 (7) 0.004 (6) 0.040 (6) 0.014 (6)
C27 0.174 (18) 0.056 (8) 0.106 (10) 0.002 (9) 0.088 (11) 0.002 (6)

Geometric parameters (Å, º)

Br1—C19 1.895 (3) C13—C14 1.383 (5)
C1—H1 0.9800 C14—H14 0.9300
C1—C9 1.513 (5) C15—C16 1.376 (4)
C1—N1 1.464 (4) C15—C20 1.382 (4)
C1—S1 1.815 (3) C15—N1 1.435 (4)
C2—C3 1.494 (4) C16—H16 0.9300
C2—N1 1.362 (4) C16—C17 1.380 (5)
C2—O1 1.227 (4) C17—H17 0.9300
C3—C4 1.396 (5) C17—C18 1.377 (5)
C3—C8 1.404 (5) C18—H18 0.9300
C4—C5 1.398 (5) C18—C19 1.357 (5)
C4—S1 1.750 (4) C19—C20 1.384 (4)
C5—H5 0.9300 C20—H20 0.9300
C5—C6 1.379 (6) C21—H21A 0.9600
C6—H6 0.9300 C21—H21B 0.9600
C6—C7 1.372 (6) C21—H21C 0.9600
C7—H7 0.9297 C21—C22 1.5069
C7—C8 1.365 (5) C22—C23 1.4022
C8—H8 0.9300 C22—C27 1.4024
C9—C10 1.387 (5) C23—H23 0.9300
C9—C14 1.382 (4) C23—C24 1.3963
C10—H10 0.9300 C24—H24 0.9300
C10—C11 1.392 (5) C24—C25 1.3964
C11—H11 0.9300 C25—H25 0.9300
C11—C12 1.361 (5) C25—C26 1.3966
C12—H12 0.9300 C26—H26 0.9300
C12—C13 1.369 (5) C26—C27 1.3963
C13—H13 0.9300 C27—H27 0.9300
C9—C1—H1 105.9 C16—C15—N1 119.8 (3)
C9—C1—S1 112.2 (2) C20—C15—N1 120.1 (3)
N1—C1—H1 105.9 C15—C16—H16 119.8
N1—C1—C9 115.8 (2) C15—C16—C17 120.4 (3)
N1—C1—S1 110.4 (2) C17—C16—H16 119.8
S1—C1—H1 105.9 C16—C17—H17 120.0
N1—C2—C3 117.7 (3) C18—C17—C16 119.9 (3)
O1—C2—C3 120.8 (3) C18—C17—H17 120.0
O1—C2—N1 121.5 (3) C17—C18—H18 120.4
C4—C3—C2 123.5 (3) C19—C18—C17 119.3 (3)
C4—C3—C8 119.3 (3) C19—C18—H18 120.4
C8—C3—C2 117.1 (3) C18—C19—Br1 119.0 (2)
C3—C4—C5 119.4 (4) C18—C19—C20 122.0 (3)
C3—C4—S1 120.8 (2) C20—C19—Br1 119.0 (3)
C5—C4—S1 119.7 (3) C15—C20—C19 118.5 (3)
C4—C5—H5 120.3 C15—C20—H20 120.8
C6—C5—C4 119.4 (4) C19—C20—H20 120.8
C6—C5—H5 120.3 C2—N1—C1 122.8 (2)
C5—C6—H6 119.2 C2—N1—C15 120.2 (2)
C7—C6—C5 121.6 (4) C15—N1—C1 116.9 (2)
C7—C6—H6 119.2 C4—S1—C1 96.77 (15)
C6—C7—H7 120.3 H21A—C21—H21B 109.5
C8—C7—C6 119.6 (4) H21A—C21—H21C 109.5
C8—C7—H7 120.1 H21B—C21—H21C 109.5
C3—C8—H8 119.6 C22—C21—H21A 109.5
C7—C8—C3 120.7 (4) C22—C21—H21B 109.5
C7—C8—H8 119.6 C22—C21—H21C 109.5
C10—C9—C1 122.7 (3) C23—C22—C21 121.0
C14—C9—C1 119.4 (3) C23—C22—C27 118.1
C14—C9—C10 117.8 (3) C27—C22—C21 120.9
C9—C10—H10 119.7 C22—C23—H23 119.4
C9—C10—C11 120.5 (3) C24—C23—C22 121.1
C11—C10—H10 119.7 C24—C23—H23 119.4
C10—C11—H11 119.7 C23—C24—H24 119.9
C12—C11—C10 120.6 (4) C23—C24—C25 120.1
C12—C11—H11 119.7 C25—C24—H24 119.9
C11—C12—H12 120.3 C24—C25—H25 120.3
C11—C12—C13 119.5 (3) C24—C25—C26 119.4
C13—C12—H12 120.3 C26—C25—H25 120.3
C12—C13—H13 119.8 C25—C26—H26 119.9
C12—C13—C14 120.4 (3) C27—C26—C25 120.1
C14—C13—H13 119.8 C27—C26—H26 119.9
C9—C14—C13 121.1 (3) C22—C27—H27 119.5
C9—C14—H14 119.4 C26—C27—C22 121.1
C13—C14—H14 119.4 C26—C27—H27 119.5
C16—C15—C20 119.9 (3)
Br1—C19—C20—C15 179.2 (2) C17—C18—C19—Br1 −179.5 (3)
C1—C9—C10—C11 −177.6 (3) C17—C18—C19—C20 0.4 (6)
C1—C9—C14—C13 176.3 (3) C18—C19—C20—C15 −0.7 (5)
C2—C3—C4—C5 −175.0 (3) C20—C15—C16—C17 0.5 (5)
C2—C3—C4—S1 3.0 (5) C20—C15—N1—C1 125.6 (3)
C2—C3—C8—C7 176.0 (3) C20—C15—N1—C2 −58.2 (4)
C3—C2—N1—C1 −10.2 (4) N1—C1—C9—C10 6.7 (4)
C3—C2—N1—C15 173.8 (3) N1—C1—C9—C14 −170.0 (3)
C3—C4—C5—C6 0.0 (5) N1—C1—S1—C4 −54.9 (2)
C3—C4—S1—C1 31.4 (3) N1—C2—C3—C4 −20.5 (5)
C4—C3—C8—C7 −0.2 (5) N1—C2—C3—C8 163.5 (3)
C4—C5—C6—C7 −1.6 (6) N1—C15—C16—C17 176.0 (3)
C5—C4—S1—C1 −150.5 (3) N1—C15—C20—C19 −175.2 (3)
C5—C6—C7—C8 2.3 (6) O1—C2—C3—C4 159.5 (3)
C6—C7—C8—C3 −1.4 (6) O1—C2—C3—C8 −16.5 (5)
C8—C3—C4—C5 0.9 (5) O1—C2—N1—C1 169.7 (3)
C8—C3—C4—S1 179.0 (2) O1—C2—N1—C15 −6.2 (4)
C9—C1—N1—C2 −77.8 (4) S1—C1—C9—C10 −121.2 (3)
C9—C1—N1—C15 98.2 (3) S1—C1—C9—C14 62.0 (4)
C9—C1—S1—C4 75.8 (3) S1—C1—N1—C2 51.0 (3)
C9—C10—C11—C12 0.6 (5) S1—C1—N1—C15 −132.9 (2)
C10—C9—C14—C13 −0.6 (5) S1—C4—C5—C6 −178.1 (3)
C10—C11—C12—C13 1.0 (6) C21—C22—C23—C24 −178.5
C11—C12—C13—C14 −2.4 (5) C21—C22—C27—C26 178.5
C12—C13—C14—C9 2.2 (5) C22—C23—C24—C25 −0.1
C14—C9—C10—C11 −0.8 (5) C23—C22—C27—C26 −0.3
C15—C16—C17—C18 −0.9 (6) C23—C24—C25—C26 −0.1
C16—C15—C20—C19 0.3 (5) C24—C25—C26—C27 0.1
C16—C15—N1—C1 −49.8 (4) C25—C26—C27—C22 0.1
C16—C15—N1—C2 126.4 (3) C27—C22—C23—C24 0.3
C16—C17—C18—C19 0.4 (6)

Hydrogen-bond geometry (Å, º)

Cg(X) = center of gravity of ring (X); D—H···Cg(X) = angle of the D—H bond with the π plane

D—H···A D—H H···A D···A D—H···A
C1—H1···Cg5 0.98 2.66 3.5802 (6) 156
C6—H6···Cg3i 0.93 2.83 3.6823 (6) 153

Symmetry code: (i) −x−1, −y, −z.

References

  1. Atwood, W., Nelson, C., Sello, J. K. & William, D. (2015). US Patent Appl. 2015/0166517 A1.
  2. Bruker (2001). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465. [DOI] [PMC free article] [PubMed]
  8. Yennawar, H., Cali, A. S., Xie, Y. & Silverberg, L. J. (2015). Acta Cryst. E71, 414–417. [DOI] [PMC free article] [PubMed]
  9. Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, II, III, I. DOI: 10.1107/S2056989016011002/zs2362sup1.cif

e-72-01108-sup1.cif (96KB, cif)

Supporting information file. DOI: 10.1107/S2056989016011002/zs2362Isup2.cml

Supporting information file. DOI: 10.1107/S2056989016011002/zs2362IIsup3.cml

Supporting information file. DOI: 10.1107/S2056989016011002/zs2362IIIsup4.cml

CCDC references: 1491202, 1491201, 1491200

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES