Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jul 19;72(Pt 8):1126–1129. doi: 10.1107/S2056989016011336

Crystal structures of two substituted thia­zolidine derivatives

Vijayan Viswanathan a, Naga Siva Rao b, Raghavachary Raghunathan b, Devadasan Velmurugan a,*
PMCID: PMC4971855  PMID: 27536396

In both compounds, namely 2′-ferrocenyl-6′-methyl-6a’-nitro-6′,6a’,6b’,7′,9′,11a’-hexa­hydro-2H-spiro­[ace­naphthyl­ene-1,11′-chromeno[3′,4′:3,4]pyrrolo­[1,2-c]thia­zol]-2-one, (I), and 6′-(4-meth­oxy­phen­yl)-6a’-nitro-6′,6a’,6b’,7′,9′,11a’-hexa­hydro-2H-spiro­[ace­naphthyl­ene-1,11′-chromeno[3′,4′:3,4]pyrrolo­[1,2-c]thia­zol]-2-one, (II), an intra­molecular C—H⋯O hydrogen bond forms an S(7) ring motif. In (I), mol­ecules are linked via two different C—H⋯O hydrogen bonds, forming chains along [001] and [100]. In (II), they are linked through C—H⋯O hydrogen bonds, forming dimers with an Inline graphic(10) ring motif while C—H⋯π inter­actions link the mol­ecules in a head-to-tail fashion, forming chains along the a-axis direction.

Keywords: crystal structure, thia­zolidine deriv­ative, ferrocen­yl, ace­naphthyl­ene, chromane, hydrogen bonding, C—H⋯π inter­actions

Abstract

In the first of the compounds reported herein, namely 6′-ferrocenyl-6a′-nitro-6′,6a′,6b′,7′,9′,11a′-hexa­hydro-2H-spiro­[ace­naphthyl­ene-1,11′-chromeno[3′,4′:3,4]pyrrolo­[1,2-c]thia­zol]-2-one, [Fe(C5H5)(C29H21N2O4S)], (I), the thia­zolidine ring adopts a twist conformation on the methine N—C atoms. In the second compound, viz. 6′-(4-methoxy­phen­yl)-6a′-nitro-6′,6a′,6b′,7′,9′,11a′-hexa­hydro-2H-spiro­[ace­naphthyl­ene-1,11′-chromeno[3′,4′:3,4]pyrrolo­[1,2-c]thia­zol]-2-one, [Fe(C5H5)(C26H19N2O5S)], (II), the thia­zolidine ring adopts an envelope conformation with a methine C atom as the flap. In both compounds, the pyrrolidine ring adopts a twist conformation on the thia­zolidine and tetra­hydro­pyran C atoms. The mean planes of the thia­zolidine and pyrrolidine rings subtend angles of 67.30 (1) and 62.95 (7)° in (I) and (II), respectively, while the mean plane of the pyrrolidine ring makes dihedral angles of 76.53 (1) and 87.74 (7)° with the ace­naphthyl­ene ring system in (I) and (II), respectively. In both compounds, an intra­molecular C—H⋯O hydrogen bond forms an S(7) ring motif. In the crystal of (I), mol­ecules are linked via two different C—H⋯O hydrogen bonds, forming chains along [001] and [100]. In (II), they are linked through C—H⋯O hydrogen bonds, forming dimers with an R 2 2(10) ring motif while C—H⋯π inter­actions link the mol­ecules in a head-to-tail fashion, forming chains along the a-axis direction.

Chemical context  

There are numerous biologically active mol­ecules with five-membered rings containing two hetero atoms. Among them, thia­zolidines are the most extensively investigated class of compounds (Fun et al., 2011). Thia­zolidine derivatives have attracted continuous inter­est over the years because of their varied biological activities (Shih et al., 2015). The special importance of the thia­zolidine ring system derives from the fact that it plays an important role in medicinal chemistry. The presence of a thia­zolidine ring in penicillin and related deriv­atives was the first recognition of its occurrence in nature (Čačić et al., 2010). Substituted thia­zolidine derivatives represent important key inter­mediates for the synthesis of pharmacologically active drugs. The group has wide range of biological activities such as anti­fungal, anti­proliferative, anti-inflammatory, anti­malarial, herbicidal, anti­viral (Samadhiya et al., 2012), anti­convulsant (Pandey et al., 2011), anti­cancer and anti-oxidant, and also has inter­esting anti­microbial activity (influenza). In addition, anti­diabetic properties (Majed & Abid, 2015) have been reported. Thia­zolidine derivatives exhibit anti-HIV, anti­tuberculotic (Fun et al., 2011), herbicidal, anti­neoplastic, hypolipidemic and anti-inflammatory activities (Vennila et al., 2011). Thia­zolidines have many inter­esting activity profiles, namely as COX-1 inhibitors, inhibitors of the bacterial enzyme MurB, which is a precursor, acting during the biosynthesis of peptidoglycan, non-nucleoside inhibitors of HIV–RT and anti-histaminic agents (Čačić et al., 2010).graphic file with name e-72-01126-scheme1.jpg graphic file with name e-72-01126-scheme2.jpg

Structural commentary  

In the mol­ecular structures of the compounds reported herein, namely 2′-ferrocenyl-6′-methyl-6a′-nitro-6′,6a′,6b′,7′,9′,11a′-hexa­hydro-2H-spiro­[ace­naphthyl­ene-1,11′-chromeno[3′,4′:3,4]pyrrolo­[1,2-c]thia­zol]-2-one, (I) (Fig. 1), and 6′-(4-methoxy­phen­yl)-6a′-nitro-6′,6a′,6b′,7′,9′,11a′-hexa­hydro-2H-spiro[ace­naphthyl­ene-1,11′-chromeno[3′,4′:3,4]pyrrolo­[1,2-c]thiazol]-2-one, (II) (Fig. 2), the pyrrolidine ring (C12/N1/C15–C17) is fused with the thia­zolidine ring (N1/C13/S1/C14/C15), the chromane ring system (C16–C23/O2/C24) and the ace­naphthyl­ene ring system (C1–C12). The thia­zolidine ring adopts a twist conformation on the N1—C15 bond with puckering parameters q2 = 0.3710 (8) Å, Φ2 = 96.7 (3)° in (I) and an envelope conformation with atom C15 as the flap in (II). The pyrrolidine ring adopts a twist conformation on the C15—C16 bond with puckering parameters q2 = 0.3616 (7) Å and Φ2 = 131.3 (3)°, and q2 = 0.3829 (8) Å and Φ2 = 123.4 (3)° in the structures of (I) and (II), respectively. The mean planes of the thia­zolidine and pyrrolidine rings are inclined to one another by 67.30 (1) and 62.95 (7)°, while the pyrrolidine and ace­naphthyl­ene ring systems are almost orthogonal to each other [dihedral angles = 76.53 (1) and 87.74 (7)°, respectively]. The chromane ring system adopts a distorted envelope conformation, the flaps being atom C24 in (I), displaced by −0.5585 (1) Å, and atom C16 in (II), displaced by 0.4076 (3) Å.

Figure 1.

Figure 1

The mol­ecular structure of (I), showing the atom labelling and displacement ellipsoids drawn at 30% probability level. The C—H⋯O contact is shown as a thin dashed line.

Figure 2.

Figure 2

The mol­ecular structure of (II), showing the atom labelling and displacement ellipsoids drawn at 30% probability level. The C—H⋯O contact is shown as a thin dashed line.

The pyrrolidine and the chromane ring systems subtend dihedral angles of 74.94 (8) and 67.68 (7)° in (I) and (II), respectively. In (I), the chromane and ferrocene ring systems lie in a plane [C17—C16—C24—C25 = 176.16 (13)° and C23—O2—C24—C25 = −177.50 (13)°]. In (II), the chromane ring system makes a dihedral angle of 62.58 (4)° with the phenyl ring. Atom O1 deviates from the ace­naphthyl­ene ring system by −0.0718 (4) and −0.2218 (3) Å in (I) and (II), respectively.

In both compounds, an intra­molecular C—H⋯O hydrogen bond forms an S(7) ring motif (Figs. 1 and 2; Tables 1 and 2).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O3i 0.97 2.50 3.417 (3) 157
C20—H20⋯O4ii 0.93 2.59 3.440 (3) 152
C24—H24⋯O1 0.98 2.51 3.301 (3) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg1 and Cg2 are the centroids of the C25–C30 and C2–C11 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O3i 0.98 2.47 3.412 (2) 161
C24—H24⋯O1 0.98 2.50 3.178 (19) 126
C8—H8⋯Cg1ii 0.93 2.82 3.759 (2) 148
C27—H27⋯Cg2iii 0.93 2.79 3.720 (3) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal of (I), mol­ecules are linked via C—H⋯O hydrogen bonds along [001] and [100] (Fig. 3 and Table 1), generating planes parallel to (010) with embedded Inline graphic(29) ring motifs. In the crystal of (II), mol­ecules are linked via C—H⋯O hydrogen bonds, forming dimers with an Inline graphic(10) ring motif, as shown in Fig. 4 and Table 2. C—H⋯π inter­actions link the mol­ecules in a head-to-tail fashion, forming chains extending along [100] (Fig. 5).

Figure 3.

Figure 3

The crystal packing of (I). Note that the C—H⋯O hydrogen bonds (shown as dashed lines) run along [001] and [100] and generate an Inline graphic(29) ring motif. H atoms not involved in hydrogen bonds have been excluded for clarity.

Figure 4.

Figure 4

The crystal packing of (II), showing the Inline graphic(10) ring motif. H atoms not involved in hydrogen bonds have been excluded for clarity.

Figure 5.

Figure 5

The compound (II) showing the C—H⋯π inter­actions linking mol­ecules in a head-to-tail fashion, forming chains running along the a axis. H atoms not involved in hydrogen bonds are omitted for clarity.

Synthesis and crystallization  

Both compounds were obtained through a similar procedure. To a solution of ace­naphtho­quinone (1.0 mmol) and thia­zolidine-4-carb­oxy­lic acid (1.5 mmol) in dry toluene, were added under nitro­gen atmosphere 3-nitro-2-ferrocenyl-2H-chromene (1 mmol), for compound (I), or 2-(4-meth­oxy­phen­yl)-3-nitro-2H-chromene (1 mmol) for compound (II). The solutions were refluxed for 18 h in a Dean–Stark apparatus to give the corresponding cyclo­adduct. After completion of the reaction as indicated by TLC, the solvent was evaporated under reduced pressure. The crude product obtained was purified by column chromatography using hexa­ne/EtOAc (8:2) as eluent [Yields: 91% for (I), 88% for (II)].

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atoms were placed in calculated positions with C—H = 0.93–0.98 Å and refined using a riding model with fixed isotropic displacement parameters: U iso(H) = 1.5U eq(C) for the methyl group and U iso(H) = 1.2U eq(C) for the remaining H atoms.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula [Fe(C5H5)(C29H21N2O4S)] C31H24N2O5S
M r 614.48 536.58
Crystal system, space group Monoclinic, P21/n Triclinic, P Inline graphic
Temperature (K) 293 293
a, b, c (Å) 11.782 (5), 16.741 (5), 14.147 (5) 11.1123 (5), 11.6373 (2), 12.4095 (3)
α, β, γ (°) 90, 98.013 (5), 90 117.812 (1), 110.812 (1), 95.468 (1)
V3) 2763.1 (17) 1258.89 (7)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.67 0.18
Crystal size (mm) 0.19 × 0.16 × 0.11 0.22 × 0.18 × 0.10
 
Data collection
Diffractometer Bruker SMART APEXII area-detector Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.746, 0.845 0.746, 0.845
No. of measured, independent and observed [I > 2σ(I)] reflections 25994, 6900, 5281 18670, 5157, 4192
R int 0.028 0.023
(sin θ/λ)max−1) 0.668 0.626
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.097, 1.03 0.037, 0.105, 1.04
No. of reflections 6900 5157
No. of parameters 379 353
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.33 0.25, −0.29

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989016011336/bg2588sup1.cif

e-72-01126-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016011336/bg2588Isup2.hkl

e-72-01126-Isup2.hkl (548.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016011336/bg2588IIsup3.hkl

e-72-01126-IIsup3.hkl (410.3KB, hkl)

CCDC references: 1023737, 1023726

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

VV and DV thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. VV thanks the DBT, Government of India, for a fellowship.

supplementary crystallographic information

(I) 6'-Ferrocenyl-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one . Crystal data

[Fe(C5H5)(C29H21N2O4S)] F(000) = 1272
Mr = 614.48 Dx = 1.477 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 11.782 (5) Å Cell parameters from 6900 reflections
b = 16.741 (5) Å θ = 1.9–28.3°
c = 14.147 (5) Å µ = 0.67 mm1
β = 98.013 (5)° T = 293 K
V = 2763.1 (17) Å3 Block, colourless
Z = 4 0.19 × 0.16 × 0.11 mm

(I) 6'-Ferrocenyl-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one . Data collection

Bruker SMART APEXII area-detector diffractometer 5281 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.028
ω and φ scans θmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −15→12
Tmin = 0.746, Tmax = 0.845 k = −22→20
25994 measured reflections l = −16→18
6900 independent reflections

(I) 6'-Ferrocenyl-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.6353P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
6900 reflections Δρmax = 0.29 e Å3
379 parameters Δρmin = −0.33 e Å3

(I) 6'-Ferrocenyl-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(I) 6'-Ferrocenyl-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.17168 (14) 0.29715 (10) 0.34129 (12) 0.0382 (4)
C2 0.27528 (15) 0.26349 (12) 0.30982 (13) 0.0437 (4)
C3 0.36894 (17) 0.29875 (15) 0.27815 (15) 0.0580 (5)
H3 0.3751 0.3540 0.2741 0.070*
C4 0.45406 (18) 0.24843 (19) 0.25235 (17) 0.0714 (7)
H4 0.5173 0.2713 0.2301 0.086*
C5 0.44852 (18) 0.16710 (18) 0.25835 (16) 0.0683 (7)
H5 0.5081 0.1363 0.2412 0.082*
C6 0.35397 (17) 0.12899 (14) 0.29018 (14) 0.0536 (5)
C7 0.3351 (2) 0.04678 (15) 0.30007 (16) 0.0660 (6)
H7 0.3897 0.0103 0.2855 0.079*
C8 0.2377 (2) 0.02016 (13) 0.33066 (17) 0.0649 (6)
H8 0.2277 −0.0346 0.3372 0.078*
C9 0.15032 (19) 0.07272 (11) 0.35320 (15) 0.0528 (5)
H9 0.0834 0.0526 0.3720 0.063*
C10 0.16661 (15) 0.15301 (10) 0.34672 (12) 0.0397 (4)
C11 0.26808 (15) 0.18037 (11) 0.31521 (12) 0.0409 (4)
C12 0.09371 (13) 0.22504 (9) 0.36526 (11) 0.0327 (3)
C13 0.13859 (17) 0.19957 (12) 0.54151 (13) 0.0478 (4)
H13A 0.1502 0.2351 0.5961 0.057*
H13B 0.2128 0.1863 0.5235 0.057*
C14 −0.06611 (17) 0.13300 (11) 0.49327 (14) 0.0489 (5)
H14A −0.0738 0.1007 0.4358 0.059*
H14B −0.1330 0.1248 0.5250 0.059*
C15 −0.05289 (14) 0.22215 (9) 0.46914 (11) 0.0344 (3)
H15 −0.0782 0.2554 0.5193 0.041*
C16 −0.10955 (13) 0.25086 (9) 0.37114 (11) 0.0302 (3)
C17 −0.02634 (13) 0.22598 (9) 0.30174 (11) 0.0305 (3)
H17 −0.0450 0.1711 0.2810 0.037*
C18 −0.03280 (14) 0.27774 (10) 0.21409 (11) 0.0335 (3)
C19 0.02668 (16) 0.25728 (12) 0.13894 (13) 0.0445 (4)
H19 0.0699 0.2106 0.1426 0.053*
C20 0.02230 (19) 0.30546 (14) 0.05904 (14) 0.0562 (5)
H20 0.0621 0.2911 0.0093 0.067*
C21 −0.04142 (19) 0.37487 (13) 0.05351 (13) 0.0556 (5)
H21 −0.0439 0.4075 0.0000 0.067*
C22 −0.10152 (17) 0.39641 (11) 0.12664 (12) 0.0462 (4)
H22 −0.1445 0.4432 0.1228 0.055*
C23 −0.09665 (14) 0.34702 (10) 0.20609 (11) 0.0351 (3)
C24 −0.12592 (14) 0.34274 (9) 0.36993 (10) 0.0310 (3)
H24 −0.0518 0.3674 0.3930 0.037*
C25 −0.21170 (15) 0.37219 (9) 0.43064 (11) 0.0360 (4)
C26 −0.1857 (2) 0.41094 (13) 0.52068 (13) 0.0546 (5)
H26 −0.1090 0.4222 0.5545 0.065*
C27 −0.2915 (2) 0.43003 (14) 0.55249 (15) 0.0691 (7)
H27 −0.3003 0.4579 0.6119 0.083*
C28 −0.3806 (2) 0.40483 (13) 0.48430 (18) 0.0621 (6)
H28 −0.4625 0.4114 0.4878 0.074*
C29 −0.33282 (16) 0.36859 (11) 0.40861 (16) 0.0476 (4)
H29 −0.3759 0.3454 0.3508 0.057*
C30 −0.1999 (2) 0.54692 (11) 0.33192 (16) 0.0600 (6)
H30 −0.1325 0.5299 0.3037 0.072*
C31 −0.1986 (2) 0.59003 (12) 0.41768 (18) 0.0629 (6)
H31 −0.1301 0.6078 0.4598 0.075*
C32 −0.3126 (2) 0.60257 (11) 0.43236 (16) 0.0586 (6)
H32 −0.3377 0.6305 0.4867 0.070*
C33 −0.3842 (2) 0.56757 (12) 0.35621 (16) 0.0595 (5)
H33 −0.4682 0.5671 0.3477 0.071*
C34 −0.3144 (2) 0.53302 (12) 0.29394 (14) 0.0591 (6)
H34 −0.3413 0.5048 0.2343 0.071*
N1 0.06793 (12) 0.23745 (8) 0.46323 (9) 0.0346 (3)
N2 −0.22575 (12) 0.21372 (8) 0.34208 (11) 0.0363 (3)
O1 0.14788 (12) 0.36653 (7) 0.35017 (10) 0.0508 (3)
O2 −0.16222 (11) 0.37057 (7) 0.27473 (8) 0.0390 (3)
O3 −0.26393 (11) 0.21596 (8) 0.25751 (9) 0.0492 (3)
O4 −0.27784 (11) 0.18748 (9) 0.40367 (11) 0.0580 (4)
S1 0.06376 (5) 0.10735 (3) 0.57181 (4) 0.06071 (16)
Fe1 −0.27986 (2) 0.48313 (2) 0.42494 (2) 0.03501 (8)

(I) 6'-Ferrocenyl-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0313 (9) 0.0423 (9) 0.0401 (9) −0.0019 (7) 0.0014 (7) −0.0009 (7)
C2 0.0288 (9) 0.0600 (11) 0.0413 (9) −0.0012 (8) 0.0016 (7) −0.0017 (8)
C3 0.0392 (11) 0.0821 (15) 0.0526 (12) −0.0127 (10) 0.0066 (9) −0.0002 (10)
C4 0.0352 (11) 0.125 (2) 0.0563 (13) −0.0084 (13) 0.0130 (10) −0.0133 (14)
C5 0.0345 (11) 0.117 (2) 0.0537 (13) 0.0167 (12) 0.0063 (9) −0.0229 (13)
C6 0.0384 (10) 0.0803 (15) 0.0400 (10) 0.0192 (10) −0.0023 (8) −0.0148 (9)
C7 0.0633 (15) 0.0755 (15) 0.0566 (13) 0.0355 (12) −0.0007 (11) −0.0184 (11)
C8 0.0830 (17) 0.0436 (11) 0.0657 (14) 0.0229 (11) 0.0015 (13) −0.0096 (9)
C9 0.0585 (13) 0.0423 (10) 0.0584 (12) 0.0086 (9) 0.0105 (10) −0.0052 (9)
C10 0.0375 (9) 0.0413 (9) 0.0400 (9) 0.0090 (7) 0.0044 (7) −0.0042 (7)
C11 0.0312 (9) 0.0562 (11) 0.0340 (9) 0.0100 (8) −0.0003 (7) −0.0066 (7)
C12 0.0286 (8) 0.0324 (8) 0.0369 (8) 0.0029 (6) 0.0038 (6) −0.0023 (6)
C13 0.0474 (11) 0.0517 (11) 0.0411 (10) 0.0094 (8) −0.0045 (8) 0.0007 (8)
C14 0.0484 (11) 0.0448 (10) 0.0539 (11) 0.0039 (8) 0.0082 (9) 0.0155 (8)
C15 0.0358 (9) 0.0373 (8) 0.0307 (8) 0.0051 (7) 0.0072 (7) 0.0016 (6)
C16 0.0268 (8) 0.0320 (8) 0.0318 (8) 0.0013 (6) 0.0039 (6) −0.0004 (6)
C17 0.0284 (8) 0.0312 (7) 0.0323 (8) 0.0007 (6) 0.0060 (6) −0.0034 (6)
C18 0.0308 (8) 0.0406 (8) 0.0290 (8) −0.0047 (7) 0.0039 (6) −0.0044 (6)
C19 0.0424 (10) 0.0546 (11) 0.0384 (9) −0.0024 (8) 0.0120 (8) −0.0084 (8)
C20 0.0576 (13) 0.0762 (14) 0.0389 (10) −0.0099 (11) 0.0215 (9) −0.0057 (9)
C21 0.0658 (14) 0.0681 (13) 0.0338 (9) −0.0130 (11) 0.0101 (9) 0.0091 (9)
C22 0.0532 (12) 0.0482 (10) 0.0364 (9) −0.0053 (8) 0.0029 (8) 0.0054 (7)
C23 0.0352 (9) 0.0418 (9) 0.0284 (8) −0.0051 (7) 0.0045 (6) −0.0022 (6)
C24 0.0328 (8) 0.0317 (8) 0.0285 (7) 0.0022 (6) 0.0045 (6) 0.0005 (6)
C25 0.0406 (9) 0.0341 (8) 0.0341 (8) 0.0090 (7) 0.0083 (7) 0.0049 (6)
C26 0.0668 (13) 0.0656 (12) 0.0300 (9) 0.0278 (10) 0.0021 (9) 0.0005 (8)
C27 0.100 (2) 0.0739 (15) 0.0400 (11) 0.0418 (14) 0.0312 (13) 0.0130 (10)
C28 0.0616 (14) 0.0558 (12) 0.0778 (16) 0.0136 (10) 0.0413 (13) 0.0157 (11)
C29 0.0403 (10) 0.0371 (9) 0.0687 (12) −0.0014 (8) 0.0191 (9) −0.0013 (8)
C30 0.0800 (16) 0.0359 (10) 0.0717 (14) −0.0013 (10) 0.0380 (13) 0.0044 (9)
C31 0.0682 (15) 0.0406 (10) 0.0811 (16) −0.0106 (10) 0.0151 (12) −0.0122 (10)
C32 0.0757 (15) 0.0358 (10) 0.0663 (14) 0.0118 (9) 0.0172 (12) −0.0083 (9)
C33 0.0657 (14) 0.0489 (11) 0.0620 (13) 0.0194 (10) 0.0019 (11) 0.0094 (10)
C34 0.0931 (18) 0.0450 (11) 0.0387 (10) 0.0105 (11) 0.0074 (11) 0.0085 (8)
N1 0.0331 (7) 0.0372 (7) 0.0323 (7) 0.0056 (6) 0.0005 (6) −0.0015 (5)
N2 0.0288 (7) 0.0346 (7) 0.0460 (8) 0.0028 (6) 0.0071 (6) −0.0001 (6)
O1 0.0481 (8) 0.0373 (7) 0.0668 (9) −0.0048 (6) 0.0071 (7) −0.0017 (6)
O2 0.0476 (7) 0.0409 (6) 0.0292 (6) 0.0123 (5) 0.0078 (5) 0.0049 (5)
O3 0.0339 (7) 0.0675 (9) 0.0444 (7) −0.0035 (6) −0.0003 (6) −0.0090 (6)
O4 0.0411 (8) 0.0710 (9) 0.0645 (9) −0.0105 (7) 0.0165 (7) 0.0170 (7)
S1 0.0694 (4) 0.0521 (3) 0.0579 (3) 0.0147 (3) −0.0006 (3) 0.0201 (2)
Fe1 0.03822 (15) 0.03383 (13) 0.03325 (13) 0.00572 (10) 0.00597 (10) −0.00222 (9)

(I) 6'-Ferrocenyl-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one . Geometric parameters (Å, º)

C1—O1 1.205 (2) C19—H19 0.9300
C1—C2 1.469 (2) C20—C21 1.380 (3)
C1—C12 1.582 (2) C20—H20 0.9300
C2—C3 1.380 (3) C21—C22 1.380 (3)
C2—C11 1.397 (3) C21—H21 0.9300
C3—C4 1.397 (3) C22—C23 1.390 (2)
C3—H3 0.9300 C22—H22 0.9300
C4—C5 1.366 (4) C23—O2 1.3799 (19)
C4—H4 0.9300 C24—O2 1.4330 (19)
C5—C6 1.411 (3) C24—C25 1.498 (2)
C5—H5 0.9300 C24—H24 0.9800
C6—C7 1.404 (3) C25—C29 1.419 (3)
C6—C11 1.410 (2) C25—C26 1.424 (3)
C7—C8 1.357 (4) C25—Fe1 2.0206 (16)
C7—H7 0.9300 C26—C27 1.419 (3)
C8—C9 1.424 (3) C26—Fe1 2.0263 (19)
C8—H8 0.9300 C26—H26 0.9800
C9—C10 1.363 (3) C27—C28 1.388 (4)
C9—H9 0.9300 C27—Fe1 2.033 (2)
C10—C11 1.409 (3) C27—H27 0.9800
C10—C12 1.524 (2) C28—C29 1.414 (3)
C12—N1 1.474 (2) C28—Fe1 2.027 (2)
C12—C17 1.566 (2) C28—H28 0.9800
C13—N1 1.437 (2) C29—Fe1 2.0197 (19)
C13—S1 1.857 (2) C29—H29 0.9800
C13—H13A 0.9700 C30—C34 1.401 (3)
C13—H13B 0.9700 C30—C31 1.410 (3)
C14—C15 1.544 (2) C30—Fe1 2.026 (2)
C14—S1 1.813 (2) C30—H30 0.9800
C14—H14A 0.9700 C31—C32 1.403 (3)
C14—H14B 0.9700 C31—Fe1 2.039 (2)
C15—N1 1.460 (2) C31—H31 0.9800
C15—C16 1.530 (2) C32—C33 1.401 (3)
C15—H15 0.9800 C32—Fe1 2.042 (2)
C16—N2 1.508 (2) C32—H32 0.9800
C16—C17 1.538 (2) C33—C34 1.410 (3)
C16—C24 1.550 (2) C33—Fe1 2.030 (2)
C17—C18 1.506 (2) C33—H33 0.9800
C17—H17 0.9800 C34—Fe1 2.022 (2)
C18—C23 1.378 (2) C34—H34 0.9800
C18—C19 1.395 (2) N2—O4 1.2158 (19)
C19—C20 1.384 (3) N2—O3 1.2186 (19)
O1—C1—C2 128.05 (16) C25—C26—H26 126.3
O1—C1—C12 124.22 (15) Fe1—C26—H26 126.3
C2—C1—C12 107.71 (14) C28—C27—C26 108.86 (19)
C3—C2—C11 120.08 (18) C28—C27—Fe1 69.77 (12)
C3—C2—C1 132.09 (19) C26—C27—Fe1 69.27 (11)
C11—C2—C1 107.83 (15) C28—C27—H27 125.6
C2—C3—C4 117.6 (2) C26—C27—H27 125.6
C2—C3—H3 121.2 Fe1—C27—H27 125.6
C4—C3—H3 121.2 C27—C28—C29 108.34 (19)
C5—C4—C3 122.9 (2) C27—C28—Fe1 70.25 (13)
C5—C4—H4 118.6 C29—C28—Fe1 69.27 (11)
C3—C4—H4 118.6 C27—C28—H28 125.8
C4—C5—C6 121.1 (2) C29—C28—H28 125.8
C4—C5—H5 119.4 Fe1—C28—H28 125.8
C6—C5—H5 119.4 C28—C29—C25 108.0 (2)
C7—C6—C11 116.3 (2) C28—C29—Fe1 69.84 (12)
C7—C6—C5 128.2 (2) C25—C29—Fe1 69.47 (10)
C11—C6—C5 115.5 (2) C28—C29—H29 126.0
C8—C7—C6 120.43 (19) C25—C29—H29 126.0
C8—C7—H7 119.8 Fe1—C29—H29 126.0
C6—C7—H7 119.8 C34—C30—C31 108.0 (2)
C7—C8—C9 122.6 (2) C34—C30—Fe1 69.59 (12)
C7—C8—H8 118.7 C31—C30—Fe1 70.19 (12)
C9—C8—H8 118.7 C34—C30—H30 126.0
C10—C9—C8 118.8 (2) C31—C30—H30 126.0
C10—C9—H9 120.6 Fe1—C30—H30 126.0
C8—C9—H9 120.6 C32—C31—C30 108.0 (2)
C9—C10—C11 118.39 (16) C32—C31—Fe1 70.00 (12)
C9—C10—C12 132.91 (17) C30—C31—Fe1 69.22 (11)
C11—C10—C12 108.70 (15) C32—C31—H31 126.0
C2—C11—C10 113.68 (15) C30—C31—H31 126.0
C2—C11—C6 122.87 (18) Fe1—C31—H31 126.0
C10—C11—C6 123.45 (19) C33—C32—C31 108.0 (2)
N1—C12—C10 117.90 (13) C33—C32—Fe1 69.43 (11)
N1—C12—C17 104.47 (12) C31—C32—Fe1 69.79 (11)
C10—C12—C17 113.24 (13) C33—C32—H32 126.0
N1—C12—C1 107.21 (13) C31—C32—H32 126.0
C10—C12—C1 102.06 (13) Fe1—C32—H32 126.0
C17—C12—C1 111.98 (13) C32—C33—C34 108.1 (2)
N1—C13—S1 107.58 (13) C32—C33—Fe1 70.32 (12)
N1—C13—H13A 110.2 C34—C33—Fe1 69.32 (12)
S1—C13—H13A 110.2 C32—C33—H33 125.9
N1—C13—H13B 110.2 C34—C33—H33 125.9
S1—C13—H13B 110.2 Fe1—C33—H33 125.9
H13A—C13—H13B 108.5 C30—C34—C33 107.9 (2)
C15—C14—S1 105.19 (13) C30—C34—Fe1 69.93 (12)
C15—C14—H14A 110.7 C33—C34—Fe1 69.95 (12)
S1—C14—H14A 110.7 C30—C34—H34 126.1
C15—C14—H14B 110.7 C33—C34—H34 126.1
S1—C14—H14B 110.7 Fe1—C34—H34 126.1
H14A—C14—H14B 108.8 C13—N1—C15 110.07 (14)
N1—C15—C16 101.46 (12) C13—N1—C12 119.29 (14)
N1—C15—C14 108.15 (13) C15—N1—C12 111.06 (13)
C16—C15—C14 117.35 (14) O4—N2—O3 124.10 (15)
N1—C15—H15 109.8 O4—N2—C16 118.91 (14)
C16—C15—H15 109.8 O3—N2—C16 116.87 (13)
C14—C15—H15 109.8 C23—O2—C24 116.45 (12)
N2—C16—C15 112.49 (13) C14—S1—C13 92.80 (9)
N2—C16—C17 110.46 (12) C29—Fe1—C25 41.12 (8)
C15—C16—C17 104.88 (12) C29—Fe1—C34 105.54 (9)
N2—C16—C24 107.42 (12) C25—Fe1—C34 116.39 (8)
C15—C16—C24 111.08 (12) C29—Fe1—C30 126.18 (8)
C17—C16—C24 110.55 (12) C25—Fe1—C30 106.99 (8)
C18—C17—C16 113.96 (13) C34—Fe1—C30 40.48 (10)
C18—C17—C12 114.58 (13) C29—Fe1—C26 69.01 (9)
C16—C17—C12 103.97 (12) C25—Fe1—C26 41.21 (7)
C18—C17—H17 108.0 C34—Fe1—C26 151.72 (9)
C16—C17—H17 108.0 C30—Fe1—C26 119.19 (10)
C12—C17—H17 108.0 C29—Fe1—C28 40.89 (8)
C23—C18—C19 118.06 (16) C25—Fe1—C28 68.99 (8)
C23—C18—C17 121.07 (14) C34—Fe1—C28 126.31 (11)
C19—C18—C17 120.87 (15) C30—Fe1—C28 164.13 (11)
C20—C19—C18 120.93 (19) C26—Fe1—C28 68.58 (10)
C20—C19—H19 119.5 C29—Fe1—C33 116.71 (9)
C18—C19—H19 119.5 C25—Fe1—C33 150.45 (8)
C21—C20—C19 119.68 (17) C34—Fe1—C33 40.73 (9)
C21—C20—H20 120.2 C30—Fe1—C33 68.12 (10)
C19—C20—H20 120.2 C26—Fe1—C33 166.86 (8)
C20—C21—C22 120.62 (18) C28—Fe1—C33 107.36 (10)
C20—C21—H21 119.7 C29—Fe1—C27 68.18 (10)
C22—C21—H21 119.7 C25—Fe1—C27 68.80 (7)
C21—C22—C23 118.88 (19) C34—Fe1—C27 164.63 (11)
C21—C22—H22 120.6 C30—Fe1—C27 154.40 (12)
C23—C22—H22 120.6 C26—Fe1—C27 40.93 (9)
C18—C23—O2 122.36 (14) C28—Fe1—C27 39.98 (10)
C18—C23—C22 121.83 (16) C33—Fe1—C27 128.18 (9)
O2—C23—C22 115.78 (15) C29—Fe1—C31 165.30 (8)
O2—C24—C25 107.16 (13) C25—Fe1—C31 128.46 (9)
O2—C24—C16 110.69 (12) C34—Fe1—C31 68.11 (10)
C25—C24—C16 114.40 (13) C30—Fe1—C31 40.58 (9)
O2—C24—H24 108.1 C26—Fe1—C31 109.88 (10)
C25—C24—H24 108.1 C28—Fe1—C31 153.45 (9)
C16—C24—H24 108.1 C33—Fe1—C31 67.79 (10)
C29—C25—C26 107.44 (16) C27—Fe1—C31 121.25 (11)
C29—C25—C24 126.76 (16) C29—Fe1—C32 151.41 (9)
C26—C25—C24 125.79 (17) C25—Fe1—C32 167.14 (9)
C29—C25—Fe1 69.41 (10) C34—Fe1—C32 68.12 (9)
C26—C25—Fe1 69.61 (10) C30—Fe1—C32 68.01 (9)
C24—C25—Fe1 125.15 (11) C26—Fe1—C32 129.74 (9)
C27—C26—C25 107.3 (2) C28—Fe1—C32 119.10 (9)
C27—C26—Fe1 69.80 (12) C33—Fe1—C32 40.25 (9)
C25—C26—Fe1 69.18 (10) C27—Fe1—C32 110.24 (9)
C27—C26—H26 126.3 C31—Fe1—C32 40.22 (9)
O1—C1—C2—C3 −3.5 (3) C21—C22—C23—C18 0.6 (3)
C12—C1—C2—C3 177.9 (2) C21—C22—C23—O2 −177.60 (17)
O1—C1—C2—C11 177.00 (18) N2—C16—C24—O2 −65.60 (15)
C12—C1—C2—C11 −1.61 (19) C15—C16—C24—O2 171.00 (12)
C11—C2—C3—C4 0.0 (3) C17—C16—C24—O2 54.99 (17)
C1—C2—C3—C4 −179.4 (2) N2—C16—C24—C25 55.58 (17)
C2—C3—C4—C5 −0.8 (3) C15—C16—C24—C25 −67.83 (18)
C3—C4—C5—C6 1.0 (4) C17—C16—C24—C25 176.16 (13)
C4—C5—C6—C7 179.8 (2) O2—C24—C25—C29 46.3 (2)
C4—C5—C6—C11 −0.3 (3) C16—C24—C25—C29 −76.8 (2)
C11—C6—C7—C8 1.1 (3) O2—C24—C25—C26 −132.02 (17)
C5—C6—C7—C8 −179.0 (2) C16—C24—C25—C26 104.88 (19)
C6—C7—C8—C9 0.6 (4) O2—C24—C25—Fe1 −43.03 (18)
C7—C8—C9—C10 −2.1 (3) C16—C24—C25—Fe1 −166.13 (11)
C8—C9—C10—C11 1.8 (3) C29—C25—C26—C27 0.3 (2)
C8—C9—C10—C12 −179.70 (19) C24—C25—C26—C27 178.93 (16)
C3—C2—C11—C10 −178.66 (17) Fe1—C25—C26—C27 59.64 (14)
C1—C2—C11—C10 0.9 (2) C29—C25—C26—Fe1 −59.33 (12)
C3—C2—C11—C6 0.6 (3) C24—C25—C26—Fe1 119.29 (16)
C1—C2—C11—C6 −179.89 (16) C25—C26—C27—C28 −0.6 (2)
C9—C10—C11—C2 179.08 (17) Fe1—C26—C27—C28 58.67 (15)
C12—C10—C11—C2 0.3 (2) C25—C26—C27—Fe1 −59.25 (13)
C9—C10—C11—C6 −0.1 (3) C26—C27—C28—C29 0.6 (2)
C12—C10—C11—C6 −178.96 (16) Fe1—C27—C28—C29 58.98 (14)
C7—C6—C11—C2 179.51 (18) C26—C27—C28—Fe1 −58.37 (15)
C5—C6—C11—C2 −0.4 (3) C27—C28—C29—C25 −0.4 (2)
C7—C6—C11—C10 −1.3 (3) Fe1—C28—C29—C25 59.17 (12)
C5—C6—C11—C10 178.75 (18) C27—C28—C29—Fe1 −59.59 (15)
C9—C10—C12—N1 63.2 (3) C26—C25—C29—C28 0.1 (2)
C11—C10—C12—N1 −118.28 (16) C24—C25—C29—C28 −178.55 (16)
C9—C10—C12—C17 −59.2 (3) Fe1—C25—C29—C28 −59.40 (13)
C11—C10—C12—C17 119.36 (15) C26—C25—C29—Fe1 59.46 (13)
C9—C10—C12—C1 −179.8 (2) C24—C25—C29—Fe1 −119.15 (16)
C11—C10—C12—C1 −1.18 (17) C34—C30—C31—C32 0.0 (2)
O1—C1—C12—N1 −52.4 (2) Fe1—C30—C31—C32 −59.50 (15)
C2—C1—C12—N1 126.23 (14) C34—C30—C31—Fe1 59.54 (14)
O1—C1—C12—C10 −177.00 (17) C30—C31—C32—C33 −0.1 (2)
C2—C1—C12—C10 1.68 (17) Fe1—C31—C32—C33 −59.08 (15)
O1—C1—C12—C17 61.6 (2) C30—C31—C32—Fe1 59.01 (15)
C2—C1—C12—C17 −119.74 (15) C31—C32—C33—C34 0.1 (2)
S1—C14—C15—N1 34.99 (16) Fe1—C32—C33—C34 −59.23 (14)
S1—C14—C15—C16 148.88 (12) C31—C32—C33—Fe1 59.30 (15)
N1—C15—C16—N2 157.43 (12) C31—C30—C34—C33 0.0 (2)
C14—C15—C16—N2 39.87 (19) Fe1—C30—C34—C33 59.93 (14)
N1—C15—C16—C17 37.33 (15) C31—C30—C34—Fe1 −59.92 (15)
C14—C15—C16—C17 −80.23 (17) C32—C33—C34—C30 −0.1 (2)
N1—C15—C16—C24 −82.12 (14) Fe1—C33—C34—C30 −59.91 (14)
C14—C15—C16—C24 160.32 (14) C32—C33—C34—Fe1 59.86 (15)
N2—C16—C17—C18 85.38 (16) S1—C13—N1—C15 31.86 (16)
C15—C16—C17—C18 −153.19 (13) S1—C13—N1—C12 −98.21 (16)
C24—C16—C17—C18 −33.38 (18) C16—C15—N1—C13 −168.36 (13)
N2—C16—C17—C12 −149.19 (12) C14—C15—N1—C13 −44.33 (18)
C15—C16—C17—C12 −27.75 (15) C16—C15—N1—C12 −34.03 (15)
C24—C16—C17—C12 92.05 (14) C14—C15—N1—C12 90.01 (16)
N1—C12—C17—C18 132.57 (13) C10—C12—N1—C13 19.8 (2)
C10—C12—C17—C18 −97.87 (16) C17—C12—N1—C13 146.48 (15)
C1—C12—C17—C18 16.87 (18) C1—C12—N1—C13 −94.53 (17)
N1—C12—C17—C16 7.54 (15) C10—C12—N1—C15 −109.86 (16)
C10—C12—C17—C16 137.10 (14) C17—C12—N1—C15 16.86 (16)
C1—C12—C17—C16 −108.16 (14) C1—C12—N1—C15 135.85 (13)
C16—C17—C18—C23 8.6 (2) C15—C16—N2—O4 22.38 (19)
C12—C17—C18—C23 −111.04 (17) C17—C16—N2—O4 139.20 (15)
C16—C17—C18—C19 −172.07 (15) C24—C16—N2—O4 −100.16 (16)
C12—C17—C18—C19 68.33 (19) C15—C16—N2—O3 −161.40 (13)
C23—C18—C19—C20 0.4 (3) C17—C16—N2—O3 −44.58 (18)
C17—C18—C19—C20 −178.95 (17) C24—C16—N2—O3 76.06 (16)
C18—C19—C20—C21 0.2 (3) C18—C23—O2—C24 26.5 (2)
C19—C20—C21—C22 −0.5 (3) C22—C23—O2—C24 −155.38 (15)
C20—C21—C22—C23 0.1 (3) C25—C24—O2—C23 −177.50 (13)
C19—C18—C23—O2 177.22 (15) C16—C24—O2—C23 −52.13 (18)
C17—C18—C23—O2 −3.4 (2) C15—C14—S1—C13 −14.50 (13)
C19—C18—C23—C22 −0.8 (3) N1—C13—S1—C14 −8.95 (14)
C17—C18—C23—C22 178.54 (15)

(I) 6'-Ferrocenyl-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13A···O3i 0.97 2.50 3.417 (3) 157
C20—H20···O4ii 0.93 2.59 3.440 (3) 152
C24—H24···O1 0.98 2.51 3.301 (3) 138

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x+1/2, −y+1/2, z−1/2.

(II) 6'-(4-Methoxyphenyl)-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one . Crystal data

C31H24N2O5S Z = 2
Mr = 536.58 F(000) = 560
Triclinic, P1 Dx = 1.416 Mg m3
a = 11.1123 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.6373 (2) Å Cell parameters from 5157 reflections
c = 12.4095 (3) Å θ = 2.0–26.4°
α = 117.812 (1)° µ = 0.18 mm1
β = 110.812 (1)° T = 293 K
γ = 95.468 (1)° Block, colourless
V = 1258.89 (7) Å3 0.22 × 0.18 × 0.10 mm

(II) 6'-(4-Methoxyphenyl)-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one . Data collection

Bruker SMART APEXII area-detector diffractometer 4192 reflections with I > 2σ(I)
ω and φ scans Rint = 0.023
Absorption correction: multi-scan (SADABS; Bruker, 2008) θmax = 26.4°, θmin = 2.0°
Tmin = 0.746, Tmax = 0.845 h = −13→13
18670 measured reflections k = −14→14
5157 independent reflections l = −15→15

(II) 6'-(4-Methoxyphenyl)-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.3546P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
5157 reflections Δρmax = 0.25 e Å3
353 parameters Δρmin = −0.29 e Å3

(II) 6'-(4-Methoxyphenyl)-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(II) 6'-(4-Methoxyphenyl)-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.16234 (14) 0.21087 (14) 1.00050 (14) 0.0303 (3)
C2 0.29371 (14) 0.31519 (15) 1.06617 (14) 0.0334 (3)
C3 0.35025 (16) 0.44717 (16) 1.17791 (16) 0.0426 (4)
H3 0.3036 0.4866 1.2273 0.051*
C4 0.48101 (18) 0.52074 (18) 1.2151 (2) 0.0555 (5)
H4 0.5204 0.6108 1.2895 0.067*
C5 0.55205 (18) 0.46379 (19) 1.1449 (2) 0.0596 (5)
H5 0.6383 0.5160 1.1729 0.071*
C6 0.49749 (16) 0.32733 (18) 1.03078 (18) 0.0466 (4)
C7 0.55832 (18) 0.2539 (2) 0.9491 (2) 0.0587 (5)
H7 0.6456 0.2956 0.9691 0.070*
C8 0.48953 (18) 0.1227 (2) 0.8415 (2) 0.0567 (5)
H8 0.5320 0.0765 0.7898 0.068*
C9 0.35631 (16) 0.05349 (18) 0.80482 (17) 0.0456 (4)
H9 0.3117 −0.0359 0.7297 0.055*
C10 0.29429 (14) 0.12055 (15) 0.88192 (15) 0.0338 (3)
C11 0.36606 (14) 0.25606 (15) 0.99389 (15) 0.0350 (3)
C12 0.15158 (13) 0.08333 (14) 0.86708 (14) 0.0296 (3)
C17 0.04423 (13) 0.07120 (14) 0.73580 (14) 0.0300 (3)
H17 0.0788 0.0420 0.6679 0.036*
C18 0.01547 (14) 0.20175 (15) 0.76059 (14) 0.0330 (3)
C19 0.10115 (16) 0.30340 (17) 0.76795 (17) 0.0422 (4)
H19 0.1760 0.2885 0.7529 0.051*
C20 0.07654 (18) 0.42587 (18) 0.7973 (2) 0.0537 (5)
H20 0.1339 0.4925 0.8008 0.064*
C21 −0.03321 (18) 0.44951 (18) 0.8216 (2) 0.0539 (5)
H21 −0.0484 0.5331 0.8437 0.065*
C22 −0.12025 (16) 0.34983 (16) 0.81319 (17) 0.0464 (4)
H22 −0.1941 0.3659 0.8300 0.056*
C23 −0.09723 (14) 0.22551 (15) 0.77958 (15) 0.0358 (3)
C24 −0.17388 (14) 0.00433 (14) 0.75027 (14) 0.0326 (3)
H24 −0.1306 0.0227 0.8431 0.039*
C25 −0.31406 (14) −0.09614 (14) 0.67748 (14) 0.0320 (3)
C30 −0.41836 (15) −0.10188 (16) 0.56946 (16) 0.0396 (3)
H30 −0.4010 −0.0438 0.5410 0.047*
C29 −0.54640 (16) −0.19207 (17) 0.50438 (17) 0.0453 (4)
H29 −0.6151 −0.1937 0.4332 0.054*
C28 −0.57380 (15) −0.28045 (17) 0.54407 (16) 0.0426 (4)
C31 −0.7326 (2) −0.4772 (2) 0.4878 (2) 0.0693 (6)
H31A −0.6753 −0.5323 0.4670 0.104*
H31B −0.8259 −0.5322 0.4271 0.104*
H31C −0.7160 −0.4419 0.5806 0.104*
C27 −0.47286 (17) −0.27538 (18) 0.65139 (18) 0.0481 (4)
H27 −0.4906 −0.3335 0.6797 0.058*
C26 −0.34419 (15) −0.18291 (18) 0.71723 (16) 0.0420 (4)
H26 −0.2765 −0.1795 0.7902 0.050*
C16 −0.07894 (14) −0.04652 (14) 0.68327 (13) 0.0313 (3)
C15 −0.01600 (15) −0.14060 (14) 0.72294 (15) 0.0355 (3)
H15 −0.0812 −0.1964 0.7299 0.043*
C14 0.04383 (17) −0.23249 (16) 0.63316 (17) 0.0456 (4)
H14A 0.0794 −0.1880 0.5964 0.055*
H14B −0.0246 −0.3194 0.5579 0.055*
C13 0.18494 (18) −0.11019 (17) 0.90177 (18) 0.0451 (4)
H13A 0.1559 −0.1419 0.9510 0.054*
H13B 0.2769 −0.0476 0.9621 0.054*
N1 0.09591 (12) −0.04224 (12) 0.85801 (12) 0.0338 (3)
N2 −0.16219 (13) −0.11755 (14) 0.53086 (13) 0.0409 (3)
O1 0.07738 (10) 0.21597 (11) 1.04066 (10) 0.0397 (3)
O2 −0.19534 (11) 0.12778 (11) 0.76151 (12) 0.0450 (3)
O3 −0.17443 (13) −0.04707 (14) 0.48225 (12) 0.0574 (3)
O4 −0.21819 (13) −0.24098 (12) 0.46534 (12) 0.0571 (3)
O5 −0.70369 (12) −0.36725 (14) 0.47129 (14) 0.0640 (4)
S1 0.17845 (6) −0.25726 (5) 0.74712 (6) 0.06168 (16)

(II) 6'-(4-Methoxyphenyl)-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0301 (7) 0.0321 (7) 0.0293 (7) 0.0130 (6) 0.0119 (6) 0.0175 (6)
C2 0.0312 (7) 0.0345 (8) 0.0328 (7) 0.0120 (6) 0.0114 (6) 0.0187 (6)
C3 0.0398 (8) 0.0347 (8) 0.0419 (8) 0.0123 (7) 0.0141 (7) 0.0157 (7)
C4 0.0441 (9) 0.0352 (9) 0.0585 (11) 0.0029 (7) 0.0138 (8) 0.0135 (8)
C5 0.0361 (9) 0.0491 (11) 0.0702 (12) −0.0016 (8) 0.0169 (8) 0.0235 (10)
C6 0.0313 (8) 0.0496 (10) 0.0552 (10) 0.0094 (7) 0.0171 (7) 0.0280 (8)
C7 0.0335 (9) 0.0705 (13) 0.0716 (12) 0.0135 (9) 0.0282 (9) 0.0353 (11)
C8 0.0428 (9) 0.0705 (13) 0.0626 (11) 0.0248 (9) 0.0348 (9) 0.0309 (10)
C9 0.0397 (8) 0.0479 (10) 0.0469 (9) 0.0175 (7) 0.0242 (7) 0.0198 (8)
C10 0.0295 (7) 0.0388 (8) 0.0360 (7) 0.0137 (6) 0.0151 (6) 0.0215 (7)
C11 0.0291 (7) 0.0377 (8) 0.0383 (8) 0.0115 (6) 0.0133 (6) 0.0219 (7)
C12 0.0293 (7) 0.0296 (7) 0.0312 (7) 0.0114 (6) 0.0147 (6) 0.0162 (6)
C17 0.0293 (7) 0.0315 (7) 0.0285 (7) 0.0087 (6) 0.0140 (5) 0.0153 (6)
C18 0.0320 (7) 0.0331 (7) 0.0294 (7) 0.0081 (6) 0.0090 (6) 0.0175 (6)
C19 0.0386 (8) 0.0416 (9) 0.0494 (9) 0.0092 (7) 0.0171 (7) 0.0292 (8)
C20 0.0474 (10) 0.0427 (10) 0.0685 (12) 0.0070 (8) 0.0164 (9) 0.0366 (9)
C21 0.0479 (10) 0.0341 (9) 0.0647 (11) 0.0123 (7) 0.0108 (8) 0.0266 (8)
C22 0.0367 (8) 0.0380 (9) 0.0515 (9) 0.0139 (7) 0.0124 (7) 0.0200 (8)
C23 0.0308 (7) 0.0315 (7) 0.0349 (7) 0.0068 (6) 0.0088 (6) 0.0157 (6)
C24 0.0317 (7) 0.0324 (7) 0.0315 (7) 0.0098 (6) 0.0152 (6) 0.0151 (6)
C25 0.0299 (7) 0.0331 (7) 0.0316 (7) 0.0105 (6) 0.0142 (6) 0.0162 (6)
C30 0.0368 (8) 0.0396 (8) 0.0413 (8) 0.0091 (7) 0.0123 (7) 0.0255 (7)
C29 0.0347 (8) 0.0464 (9) 0.0422 (9) 0.0078 (7) 0.0054 (7) 0.0245 (8)
C28 0.0327 (8) 0.0390 (8) 0.0441 (9) 0.0042 (6) 0.0141 (7) 0.0176 (7)
C31 0.0636 (12) 0.0463 (11) 0.0810 (14) −0.0031 (9) 0.0374 (11) 0.0227 (10)
C27 0.0418 (9) 0.0533 (10) 0.0589 (10) 0.0097 (8) 0.0215 (8) 0.0389 (9)
C26 0.0352 (8) 0.0543 (10) 0.0431 (8) 0.0129 (7) 0.0145 (7) 0.0334 (8)
C16 0.0310 (7) 0.0304 (7) 0.0269 (7) 0.0069 (6) 0.0132 (6) 0.0118 (6)
C15 0.0376 (8) 0.0282 (7) 0.0392 (8) 0.0090 (6) 0.0203 (6) 0.0151 (6)
C14 0.0523 (10) 0.0332 (8) 0.0487 (9) 0.0159 (7) 0.0277 (8) 0.0163 (7)
C13 0.0530 (10) 0.0438 (9) 0.0514 (9) 0.0249 (8) 0.0262 (8) 0.0311 (8)
N1 0.0363 (6) 0.0312 (6) 0.0373 (6) 0.0129 (5) 0.0174 (5) 0.0198 (5)
N2 0.0362 (7) 0.0433 (8) 0.0306 (6) 0.0059 (6) 0.0147 (5) 0.0126 (6)
O1 0.0362 (5) 0.0429 (6) 0.0366 (6) 0.0130 (5) 0.0201 (5) 0.0162 (5)
O2 0.0356 (6) 0.0318 (6) 0.0648 (7) 0.0117 (5) 0.0261 (5) 0.0214 (5)
O3 0.0608 (8) 0.0663 (8) 0.0370 (6) 0.0120 (6) 0.0136 (6) 0.0296 (6)
O4 0.0537 (7) 0.0416 (7) 0.0383 (6) −0.0039 (6) 0.0137 (5) 0.0034 (5)
O5 0.0394 (6) 0.0582 (8) 0.0674 (8) −0.0082 (6) 0.0094 (6) 0.0297 (7)
S1 0.0781 (4) 0.0513 (3) 0.0716 (3) 0.0425 (3) 0.0426 (3) 0.0342 (3)

(II) 6'-(4-Methoxyphenyl)-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one . Geometric parameters (Å, º)

C1—O1 1.2085 (17) C22—H22 0.9300
C1—C2 1.471 (2) C23—O2 1.3728 (18)
C1—C12 1.5783 (19) C24—O2 1.4291 (18)
C2—C3 1.373 (2) C24—C25 1.5090 (19)
C2—C11 1.402 (2) C24—C16 1.5612 (19)
C3—C4 1.405 (2) C24—H24 0.9800
C3—H3 0.9300 C25—C26 1.376 (2)
C4—C5 1.367 (3) C25—C30 1.394 (2)
C4—H4 0.9300 C30—C29 1.373 (2)
C5—C6 1.415 (3) C30—H30 0.9300
C5—H5 0.9300 C29—C28 1.383 (2)
C6—C11 1.404 (2) C29—H29 0.9300
C6—C7 1.415 (3) C28—O5 1.3652 (18)
C7—C8 1.359 (3) C28—C27 1.374 (2)
C7—H7 0.9300 C31—O5 1.413 (2)
C8—C9 1.414 (2) C31—H31A 0.9600
C8—H8 0.9300 C31—H31B 0.9600
C9—C10 1.369 (2) C31—H31C 0.9600
C9—H9 0.9300 C27—C26 1.388 (2)
C10—C11 1.408 (2) C27—H27 0.9300
C10—C12 1.5242 (19) C26—H26 0.9300
C12—N1 1.4682 (18) C16—N2 1.5061 (18)
C12—C17 1.5714 (19) C16—C15 1.528 (2)
C17—C18 1.494 (2) C15—N1 1.4572 (19)
C17—C16 1.5331 (19) C15—C14 1.542 (2)
C17—H17 0.9800 C15—H15 0.9800
C18—C23 1.384 (2) C14—S1 1.8111 (18)
C18—C19 1.392 (2) C14—H14A 0.9700
C19—C20 1.378 (2) C14—H14B 0.9700
C19—H19 0.9300 C13—N1 1.438 (2)
C20—C21 1.379 (3) C13—S1 1.8521 (17)
C20—H20 0.9300 C13—H13A 0.9700
C21—C22 1.376 (2) C13—H13B 0.9700
C21—H21 0.9300 N2—O3 1.2164 (18)
C22—C23 1.384 (2) N2—O4 1.2215 (17)
O1—C1—C2 127.79 (13) O2—C24—C25 105.19 (11)
O1—C1—C12 124.36 (12) O2—C24—C16 113.86 (11)
C2—C1—C12 107.80 (11) C25—C24—C16 114.99 (11)
C3—C2—C11 120.59 (14) O2—C24—H24 107.5
C3—C2—C1 132.13 (14) C25—C24—H24 107.5
C11—C2—C1 107.27 (12) C16—C24—H24 107.5
C2—C3—C4 117.80 (16) C26—C25—C30 117.72 (13)
C2—C3—H3 121.1 C26—C25—C24 121.29 (13)
C4—C3—H3 121.1 C30—C25—C24 120.97 (13)
C5—C4—C3 121.91 (16) C29—C30—C25 120.97 (14)
C5—C4—H4 119.0 C29—C30—H30 119.5
C3—C4—H4 119.0 C25—C30—H30 119.5
C4—C5—C6 121.62 (16) C30—C29—C28 120.37 (15)
C4—C5—H5 119.2 C30—C29—H29 119.8
C6—C5—H5 119.2 C28—C29—H29 119.8
C11—C6—C5 115.69 (16) O5—C28—C27 124.78 (15)
C11—C6—C7 116.01 (16) O5—C28—C29 115.62 (15)
C5—C6—C7 128.30 (16) C27—C28—C29 119.60 (14)
C8—C7—C6 120.19 (16) O5—C31—H31A 109.5
C8—C7—H7 119.9 O5—C31—H31B 109.5
C6—C7—H7 119.9 H31A—C31—H31B 109.5
C7—C8—C9 122.90 (16) O5—C31—H31C 109.5
C7—C8—H8 118.6 H31A—C31—H31C 109.5
C9—C8—H8 118.6 H31B—C31—H31C 109.5
C10—C9—C8 118.72 (16) C28—C27—C26 119.50 (15)
C10—C9—H9 120.6 C28—C27—H27 120.2
C8—C9—H9 120.6 C26—C27—H27 120.2
C9—C10—C11 118.31 (14) C25—C26—C27 121.81 (14)
C9—C10—C12 132.99 (14) C25—C26—H26 119.1
C11—C10—C12 108.51 (12) C27—C26—H26 119.1
C2—C11—C6 122.37 (14) N2—C16—C15 111.92 (12)
C2—C11—C10 113.76 (13) N2—C16—C17 110.50 (11)
C6—C11—C10 123.87 (14) C15—C16—C17 103.66 (11)
N1—C12—C10 120.51 (12) N2—C16—C24 107.57 (11)
N1—C12—C17 104.32 (11) C15—C16—C24 111.11 (11)
C10—C12—C17 110.66 (11) C17—C16—C24 112.14 (11)
N1—C12—C1 108.87 (11) N1—C15—C16 101.78 (11)
C10—C12—C1 101.87 (11) N1—C15—C14 107.69 (12)
C17—C12—C1 110.56 (11) C16—C15—C14 116.88 (13)
C18—C17—C16 114.61 (12) N1—C15—H15 110.0
C18—C17—C12 114.00 (11) C16—C15—H15 110.0
C16—C17—C12 103.47 (11) C14—C15—H15 110.0
C18—C17—H17 108.1 C15—C14—S1 104.77 (11)
C16—C17—H17 108.1 C15—C14—H14A 110.8
C12—C17—H17 108.1 S1—C14—H14A 110.8
C23—C18—C19 118.15 (14) C15—C14—H14B 110.8
C23—C18—C17 120.18 (13) S1—C14—H14B 110.8
C19—C18—C17 121.66 (14) H14A—C14—H14B 108.9
C20—C19—C18 120.87 (16) N1—C13—S1 107.70 (11)
C20—C19—H19 119.6 N1—C13—H13A 110.2
C18—C19—H19 119.6 S1—C13—H13A 110.2
C19—C20—C21 119.93 (16) N1—C13—H13B 110.2
C19—C20—H20 120.0 S1—C13—H13B 110.2
C21—C20—H20 120.0 H13A—C13—H13B 108.5
C22—C21—C20 120.20 (16) C13—N1—C15 110.12 (12)
C22—C21—H21 119.9 C13—N1—C12 120.18 (12)
C20—C21—H21 119.9 C15—N1—C12 111.07 (11)
C21—C22—C23 119.54 (16) O3—N2—O4 124.37 (14)
C21—C22—H22 120.2 O3—N2—C16 117.71 (13)
C23—C22—H22 120.2 O4—N2—C16 117.82 (13)
O2—C23—C18 123.07 (13) C23—O2—C24 121.41 (11)
O2—C23—C22 115.68 (14) C28—O5—C31 118.60 (15)
C18—C23—C22 121.20 (14) C14—S1—C13 92.72 (7)
O1—C1—C2—C3 −7.6 (3) O2—C24—C25—C26 −138.70 (14)
C12—C1—C2—C3 174.87 (16) C16—C24—C25—C26 95.21 (17)
O1—C1—C2—C11 171.08 (14) O2—C24—C25—C30 39.81 (17)
C12—C1—C2—C11 −6.50 (15) C16—C24—C25—C30 −86.28 (17)
C11—C2—C3—C4 1.2 (2) C26—C25—C30—C29 −0.6 (2)
C1—C2—C3—C4 179.63 (16) C24—C25—C30—C29 −179.14 (14)
C2—C3—C4—C5 −1.1 (3) C25—C30—C29—C28 −0.8 (3)
C3—C4—C5—C6 0.0 (3) C30—C29—C28—O5 −179.01 (16)
C4—C5—C6—C11 0.9 (3) C30—C29—C28—C27 1.5 (3)
C4—C5—C6—C7 −179.3 (2) O5—C28—C27—C26 179.69 (16)
C11—C6—C7—C8 0.5 (3) C29—C28—C27—C26 −0.9 (3)
C5—C6—C7—C8 −179.3 (2) C30—C25—C26—C27 1.2 (2)
C6—C7—C8—C9 0.5 (3) C24—C25—C26—C27 179.76 (15)
C7—C8—C9—C10 −1.0 (3) C28—C27—C26—C25 −0.5 (3)
C8—C9—C10—C11 0.5 (2) C18—C17—C16—N2 82.79 (14)
C8—C9—C10—C12 174.67 (16) C12—C17—C16—N2 −152.48 (11)
C3—C2—C11—C6 −0.2 (2) C18—C17—C16—C15 −157.15 (11)
C1—C2—C11—C6 −179.06 (14) C12—C17—C16—C15 −32.42 (13)
C3—C2—C11—C10 −179.84 (14) C18—C17—C16—C24 −37.21 (16)
C1—C2—C11—C10 1.34 (17) C12—C17—C16—C24 87.52 (13)
C5—C6—C11—C2 −0.8 (2) O2—C24—C16—N2 −79.34 (14)
C7—C6—C11—C2 179.40 (16) C25—C24—C16—N2 42.14 (16)
C5—C6—C11—C10 178.78 (16) O2—C24—C16—C15 157.84 (11)
C7—C6—C11—C10 −1.0 (2) C25—C24—C16—C15 −80.67 (15)
C9—C10—C11—C2 −179.85 (14) O2—C24—C16—C17 42.35 (16)
C12—C10—C11—C2 4.61 (17) C25—C24—C16—C17 163.83 (12)
C9—C10—C11—C6 0.6 (2) N2—C16—C15—N1 158.74 (11)
C12—C10—C11—C6 −174.99 (14) C17—C16—C15—N1 39.65 (13)
C9—C10—C12—N1 56.9 (2) C24—C16—C15—N1 −80.99 (13)
C11—C10—C12—N1 −128.44 (13) N2—C16—C15—C14 41.75 (17)
C9—C10—C12—C17 −65.0 (2) C17—C16—C15—C14 −77.34 (15)
C11—C10—C12—C17 109.62 (13) C24—C16—C15—C14 162.02 (12)
C9—C10—C12—C1 177.43 (17) N1—C15—C14—S1 37.43 (14)
C11—C10—C12—C1 −7.94 (15) C16—C15—C14—S1 151.13 (11)
O1—C1—C12—N1 −40.63 (18) S1—C13—N1—C15 30.38 (15)
C2—C1—C12—N1 137.05 (11) S1—C13—N1—C12 −100.60 (13)
O1—C1—C12—C10 −168.95 (13) C16—C15—N1—C13 −168.37 (12)
C2—C1—C12—C10 8.73 (14) C14—C15—N1—C13 −44.91 (16)
O1—C1—C12—C17 73.41 (17) C16—C15—N1—C12 −32.75 (14)
C2—C1—C12—C17 −108.91 (12) C14—C15—N1—C12 90.71 (14)
N1—C12—C17—C18 138.20 (12) C10—C12—N1—C13 18.04 (19)
C10—C12—C17—C18 −90.79 (14) C17—C12—N1—C13 143.01 (13)
C1—C12—C17—C18 21.31 (16) C1—C12—N1—C13 −98.94 (14)
N1—C12—C17—C16 13.06 (13) C10—C12—N1—C15 −112.52 (14)
C10—C12—C17—C16 144.08 (11) C17—C12—N1—C15 12.44 (14)
C1—C12—C17—C16 −103.82 (12) C1—C12—N1—C15 130.49 (12)
C16—C17—C18—C23 20.89 (18) C15—C16—N2—O3 −152.92 (13)
C12—C17—C18—C23 −98.09 (15) C17—C16—N2—O3 −37.95 (17)
C16—C17—C18—C19 −160.37 (13) C24—C16—N2—O3 84.76 (15)
C12—C17—C18—C19 80.65 (17) C15—C16—N2—O4 30.56 (18)
C23—C18—C19—C20 1.9 (2) C17—C16—N2—O4 145.53 (13)
C17—C18—C19—C20 −176.89 (15) C24—C16—N2—O4 −91.76 (15)
C18—C19—C20—C21 0.8 (3) C18—C23—O2—C24 13.6 (2)
C19—C20—C21—C22 −1.7 (3) C22—C23—O2—C24 −168.94 (13)
C20—C21—C22—C23 −0.3 (3) C25—C24—O2—C23 −157.98 (12)
C19—C18—C23—O2 173.50 (14) C16—C24—O2—C23 −31.20 (18)
C17—C18—C23—O2 −7.7 (2) C27—C28—O5—C31 −12.7 (3)
C19—C18—C23—C22 −3.9 (2) C29—C28—O5—C31 167.94 (17)
C17—C18—C23—C22 174.92 (14) C15—C14—S1—C13 −17.28 (12)
C21—C22—C23—O2 −174.43 (15) N1—C13—S1—C14 −6.37 (12)
C21—C22—C23—C18 3.1 (2)

(II) 6'-(4-Methoxyphenyl)-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one . Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C25–C30 and C2–C11 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C17—H17···O3i 0.98 2.47 3.412 (2) 161
C24—H24···O1 0.98 2.50 3.178 (19) 126
C8—H8···Cg1ii 0.93 2.82 3.759 (2) 148
C27—H27···Cg2iii 0.93 2.79 3.720 (3) 149

Symmetry codes: (i) −x, −y, −z+1; (ii) x+1, y, z; (iii) −x, −y, −z+2.

References

  1. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Čačić, M., Molnar, M., Šarkanj, B., Has-Schön, E. & Rajković, V. (2010). Molecules, 15, 6795–6809. [DOI] [PMC free article] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Fun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706. [DOI] [PMC free article] [PubMed]
  5. Majed, A. A. & Abid, D. S. (2015). Basrah J. Sci. 33, 101–117.
  6. Pandey, Y., Sharma, P. K., Kumar, N. & Singh, A. (2011). Int. J. Pharm. Tech Res. 3, 980–985.
  7. Samadhiya, P., Sharma, R., Srivastava, S. K. & Srivastava, S. D. (2012). Leonardo J. Sci. 20, 37–58.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  10. Shih, M. H., Xu, Y. Y., Yang, Y. S. & Lin, G. L. (2015). Molecules, 20, 6520–6532. [DOI] [PMC free article] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Vennila, J. P., Thiruvadigal, D. J., Kavitha, H. P., Chakkaravarthi, G. & Manivannan, V. (2011). Acta Cryst. E67, o1902. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989016011336/bg2588sup1.cif

e-72-01126-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016011336/bg2588Isup2.hkl

e-72-01126-Isup2.hkl (548.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016011336/bg2588IIsup3.hkl

e-72-01126-IIsup3.hkl (410.3KB, hkl)

CCDC references: 1023737, 1023726

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES