Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jul 19;72(Pt 8):1130–1137. doi: 10.1107/S2056989016011385

Distinct coordination geometries in bis­[N,N-bis­(2-meth­oxy­eth­yl)di­thio­carbamato-κ2 S,S′]di­phenyltin(IV) and bis­[N-(2-meth­oxy­eth­yl)-N-methyl­dithio­carbamato-κ2 S,S′]di­phenyl­tin(IV): crystal structures and Hirshfeld surface analysis

Rapidah Mohamad a, Normah Awang b,, Mukesh M Jotani c, Edward R T Tiekink d,*
PMCID: PMC4971856  PMID: 27536397

Two distinct coordination geometries, each based on a C2S4 donor set, are found in the title compounds, being based on an octa­hedron in (C6H5)2Sn(S2CN(Me)CH2CH2OMe)2 and a skew trapezoidal bipyramid in (C6H5)2Sn[S2CN(CH2CH2OMe)2]2.

Keywords: crystal structure, organotin, di­thio­carbamate, Hirshfeld surface analysis

Abstract

The crystal and mol­ecular structures of two di­phenyl­tin bis­(di­thio­carbamate)s, [Sn(C6H5)2(C5H10NOS2)2], (I), and [Sn(C6H5)2(C7H14NO2S2)2], (II), are described. In (I), in which the metal atom lies on a twofold rotation axis, the di­thio­carbamate ligand coordinates with approximately equal Sn—S bond lengths and the ipso-C atoms of the Sn-bound phenyl groups occupy cis-positions in the resulting octa­hedral C2S4 donor set. A quite distinct coordination geometry is noted in (II), arising as a result of quite disparate Sn—S bond lengths. Here, the four S-donors define a trapezoidal plane with the ipso-C atoms lying over the weaker of the Sn—S bonds so that the C2S4 donor set defines a skewed trapezoidal bipyramid. The packing of (I) features supra­molecular layers in the ab plane sustained by methyl­ene-C—H⋯π(Sn–ar­yl) inter­actions; these stack along the c-axis direction with no specific inter­actions between them. In (II), supra­molecular chains along the b-axis direction are formed by methyl­ene-C—O(ether) inter­actions; these pack with no directional inter­actions between them. A Hirshfeld surface analysis was conducted on both (I) and (II) and revealed the dominance of H⋯H inter­actions contributing to the respective surfaces, i.e. >60% in each case, and other features consistent with the description of the mol­ecular packing above.

Chemical context  

In a review of the applications and structures of tin/organotin di­thio­carbamates (di­thio­carbamate is S2CNRR’; R, R′ = alkyl, ar­yl), two applications were highlighted, namely, their potential biological activity and their utility as single-source precursors for tin sulfide nanoparticles (Tiekink, 2008). Investigations in both fields continue, e.g. as anti-cancer agents (Khan et al., 2014, 2015; Kadu et al., 2015), as anti-microbials (Zia-ur-Rehman et al., 2011; Ferreira et al., 2012, 2014) and as fungicides (Yu et al., 2014). The use of various tin di­thio­carbamate species as precursors for tin sulfide materials also continues to attract significant attention (Ramasamy et al., 2013; Lewis et al., 2014; Kevin et al., 2015). It was during the course of ongoing studies of the anti-tumour potential of organotin di­thio­carbamates (Khan et al., 2014, 2015) that attention was directed towards (2-meth­oxy­eth­yl)di­thio­carbamate derivatives. Herein, the crystal and mol­ecular structures of two di­phenyl­tin derivatives, viz. [Sn(C6H5)2(C5H10NOS2)2], (I), and [Sn(C6H5)2(C7H14NOS2)2], (II), are reported that exhibit quite distinct coordination geometries, along with a Hirshfeld surface analysis to provide more details on the mol­ecular packing.graphic file with name e-72-01130-scheme1.jpg

Structural commentary  

The asymmetric unit of (I) comprises half a mol­ecule as the tin atom is located on a twofold rotation axis, Fig. 1. The C2S4 donor set is defined by two chelating di­thio­carbamate ligands and the ipso-carbon atoms of the tin-bound phenyl substituents. The difference between the Sn—Sshort and Sn—Slong bond lengths, i.e. Δ(Sn—S), is relatively small at 0.06 Å, indicating an essentially symmetric coordination mode. This symmetry is reflected in the near equivalence of the associated C1—S bond lengths with the difference between them being 0.024 Å, Table 1. The longer Sn—S2 bond is approximately trans to the ipso-carbon atom. The overall coordination geometry is based on an octa­hedron with the ipso-carbon atoms occupying mutually cis positions. The meth­oxy­ethyl group is approximately perpendicular to the S2CN core as seen in the value of the C1—N1—C3—C4 torsion angle of 93.8 (2)°. The residue itself is almost planar and adopts an extended conformation as seen in the C5—O1—C4—C3 torsion angle of 175.27 (19)°.

Figure 1.

Figure 1

The mol­ecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Unlabelled atoms are related by the symmetry operation (1 − x, y, Inline graphic − z).

Table 1. Geometric data (Å, °) for (I) and (II).

Parameter (I) (II)
Sn—S1 2.6071 (6) 2.5060 (6)
Sn—S2 2.6653 (6) 2.9875 (6)
Sn—S3 2.5230 (6)
Sn—S4 2.9800 (6)
Sn—C11 2.1677 (18)
Sn—C21 2.131 (2)
Sn—C31 2.124 (2)
C1—S1 1.7311 (19) 1.756 (2)
C1—S2 1.7067 (19) 1.692 (2)
C8—S3 1.752 (2)
C8—S4 1.692 (2)
S1i—Sn—S2i 67.742 (17) 64.922 (18)
S3—Sn—S4 64.591 (16)
S1—Sn—S1i 152.00 (2)
S2i—Sn—C11i 159.03 (5)
S1—Sn—S3 82.873 (18)
S2—Sn—S4 147.642 (17)
C—Sn—C 100.07 (10) 130.12 (9)

Symmetry code: (i) 1 − x, y, Inline graphic − z.

The mol­ecule in (II), Fig. 2, lies on a general position and has a quite distinct coordination geometry. As for (I), the tin atom is located within a C2S4 donor set. However, the di­thio­carbamate ligand is coordinating with significantly greater values of ΔS, i.e. 0.48 and 0.46 Å for the S1- and S3-ligands, respectively, with the Sn—Sshort bonds in (II) being shorter than the equivalent bonds in (I) and at the same time, the Sn—Slong bonds in (II) being longer than those in (I). An inter­esting consequence of the different modes of coordination of the di­thio­carbamate ligands in the two structures is that the Sn—Cbond lengths in (II) are considerably shorter than those in (I), Table 1. As the di­thio­carbamate anions are approximately co-planar and the more tightly bound S1 and S3 atoms lie to the same side of the mol­ecule, the S4 donor atoms define a trapezoidal plane. The tin-bound ipso-carbon atoms are disposed over the weaker Sn—S bonds so that the coordination geometry is skewed trapezoidal bipyramidal. Reflecting the significant disparity in the Sn—S bonds, there are large differences in the associated C—S bonds with the shorter of these being associated with the weakly coordinating sulfur atoms, Table 1. As for (I), the meth­oxy­ethyl groups lie almost perpendicular to the plane through the S2CN atoms with the greatest deviation being for the O1-containing residue, i.e. the C1—N1—C5—C6 torsion angle is −81.5 (3)°. For each di­thio­carbamate ligand, the residues lie to either side of the S2CN plane, and each is as for (I), adopting an almost planar and extended conformation with the O4-residue showing the greatest deviation, albeit marginally, as seen in the C14—O4—C13—C12 torsion angle of 176.3 (2)°.

Figure 2.

Figure 2

The mol­ecular structure of (II), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Supra­molecular features  

Geometric parameters characterizing the inter­molecular inter­actions operating in the crystal structures of (I) and (II) are collected in Tables 2 and 3, respectively. Based on the distance criteria in PLATON (Spek, 2009), the only significant inter­molecular contact in the mol­ecular packing of (I) is a methyl­ene-C—H⋯π(Sn–ar­yl) inter­action. From symmetry, there are four such inter­actions per mol­ecule so that a two-dimensional supra­molecular layer in the ab plane ensues, Fig. 3 a. These stack along the c axis being separated by hydro­phobic inter­actions, Fig. 3 b.

Table 2. Hydrogen-bond geometry (Å, °) for (I) .

Cg1 is the centroid of the C11–C16 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4ACg1i 0.97 2.86 3.730 (3) 150

Symmetry code: (i) Inline graphic.

Table 3. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O2i 0.97 2.52 3.404 (4) 151

Symmetry code: (i) Inline graphic.

Figure 3.

Figure 3

Mol­ecular packing in (I), showing (a) a supra­molecular layer in the ab plane sustained by methyl­ene-C—H⋯π(Sn-phen­yl) inter­actions (purple dashed lines) and (b) a view of the unit-cell contents in projection down the b axis.

In the mol­ecular packing of (II), methyl­ene-C—H⋯O inter­actions lead to linear supra­molecular chains along the b axis, Fig. 4 a. These pack into the three-dimensional architecture of the crystal with no directional inter­molecular inter­actions between them, Fig. 4 b.

Figure 4.

Figure 4

Mol­ecular packing in (II), showing (a) a supra­molecular chain along the b axis sustained by methyl­ene-C—H⋯O inter­actions (orange dashed lines) and (b) a view of the unit-cell contents in projection down the a axis.

A more detailed analysis of the mol­ecular packing in (I) and (II) is given below in Hirshfeld surface analysis.

Hirshfeld surface analysis  

Hirshfeld surfaces for (I) and (II) were mapped over d norm, d e, shape-index, curvedness and electrostatic potential with the aid of Crystal Explorer 3.1 (Wolff et al., 2012). The electrostatic potentials were calculated using TONTO (Spackman et al., 2008; Jayatilaka et al., 2005), integrated into Crystal Explorer, and were mapped on the Hirshfeld surfaces using the STO-3G basis set at Hartree–Fock level of theory over the range ±0.12 au. The contact distances d e and d i from the Hirshfeld surface to the nearest atom inside and outside, respectively, enables the analysis of the inter­molecular inter­actions through the mapping of d norm. The combination of d e and d i in the form of two-dimensional fingerprint plots (McKinnon et al., 2007) provides a visual summary of inter­molecular contacts in the crystal.

As evident from Fig. 5, the Hirshfeld surfaces for (I) and (II) have quite different shapes reflecting the distinctive coordination geometries, and the dark-red and dark-blue regions assigned to negative and positive potentials are localized near the respective functional groups. The absence of conventional hydrogen bonds in the crystal of (I) is consistent with the non-appearance of characteristic red spots in the calculated Hirshfeld surface mapped over d norm (not shown). By contrast, in (II), the weak C—H⋯O interaction gives rise to red spots as evident in Fig. 6.

Figure 5.

Figure 5

View of Hirshfeld surfaces mapped over the electrostatic potential (the red and blue regions represent negative and positive electrostatic potentials, respectively): (a) for (I) and (b) for (II).

Figure 6.

Figure 6

Views of Hirshfeld surfaces mapped over d norm for (II).

The overall two-dimensional fingerprint plots for (I) and (II) and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and S⋯H/H⋯S contacts are illustrated in Fig. 7; their relative contributions are summarized in Table 4. The different distribution of points in the overall fingerprint plots for (I) and (II) are due to their different mol­ecular conformations. Also, it is noted that the points are distributed in different (d e, d i) ranges, i.e. 1.2 to 2.7 Å for (I) and 1.2 to 2.9 Å for (II).

Figure 7.

Figure 7

Comparison of the (a) complete Hirshfeld surface and full two-dimensional fingerprint plots between (I) and (II), and the plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) S⋯H/H⋯S contacts.

Table 4. Percentage contribution of the different inter­molecular contacts to the Hirshfeld surface in (I) and (II) .

Contact % contribution in (I) % contribution in (II)
H⋯H 61.8 66.1
C⋯H/H⋯C 15.6 11.4
O⋯H/H⋯O 4.7 7.4
S⋯H/H⋯S 15.6 13.5
C⋯S/S⋯C 1.3 0.0
N⋯H/H⋯N 1.0 0.4
C⋯C 0.0 1.0
S⋯S 0.0 0.1
C⋯O/O⋯C 0.0 0.1

As evident from the data in Table 4 and the fingerprint plots in Fig. 7 b, H⋯H contacts clearly make the most significant contributions to the Hirshfeld surfaces of both (I) and (II). In the fingerprint plot of (I) delineated into H⋯H contacts (Fig. 7 b), all the points are situated at (d e, d i) distances equal to or greater than their van der Waals separations i.e. 1.2 Å, reflecting zero propensity to form such inter­molecular contacts. By contrast, for (II), points at (d e, d i) distances less than 1.2 Å, with the peak at d e = d i ∼1.2 Å, resulting from short inter­atomic H⋯H contacts, Table 5. The 7.4% contribution from O⋯H/H⋯O contacts to the Hirshfeld surface of (II) reflects the presence of an inter­molecular C—H⋯O inter­action and a short inter­atomic O⋯H/H⋯O contact (Table 5), showing a forceps-like distribution of points with the tips at d e + d i ∼2.5 Å in Fig. 7 c. The small contribution, i.e. 4.7%, due to analogous inter­actions in (I) have a low density of points that are generally masked by other contacts in the plot consistent with a low propensity to form.

Table 5. Short inter­atomic contacts in (II) .

Contact distance symmetry operation
O4⋯H6B 2.69 −1 − x, y, z
H7C⋯H14B 2.37 1 + x, y, z
H10B⋯H34 2.36 1 − x, −y, −z

The pair of characteristics wings with the edges at d e + d i ∼2.9 Å in the fingerprint plot delineated into C⋯H/H⋯C contacts for (I) is due to the contribution of methyl­ene-C—H⋯π(Sn–ar­yl) inter­actions, Fig. 7 d. The presence of these inter­actions are also indicated through the pale-orange spots present on the Hirshfeld surface mapped over d e, shown within the blue circle in Fig. 8 a, and bright-red spots over the front side of shape-indexed surfaces identified with arrows in Fig. 8 b. The reciprocal of these C—H⋯π contacts, i.e. π⋯H—C contacts, are seen as blue spots near the ring in Fig. 8 b. The fingerprint plot for (II) delineated into C⋯H/H⋯C contacts has a distinct distribution of points with the (d e, d i) distances greater than their van der Waals separations, confirming the absence of these inter­actions, Fig. 7 d. The conformations of di­thio­carbamate ligands in both (I) and (II) limit the sulfur atoms’ ability to form significant S⋯H inter­molecular inter­actions; these atoms are separated at distances greater than their van der Waals radii, i.e. 3.0 Å. This observation is despite the nearly symmetrical distributions of points in the respective plots for both (I) and (II), Fig. 7 e, and the significant percentage contributions to their Hirshfeld surfaces (Table 5).

Figure 8.

Figure 8

View of the Hirshfeld surfaces for (I), showing (a) mapped over d e with the pale-orange spot within the blue circle indicating the involvement of the aryl ring in C—H⋯π inter­actions and (b) mapped with the shape-index property with the bright-red spot, identified with an arrow, indicating the C—H⋯π inter­action and the blue spots indicating complementary π⋯H—C inter­actions.

Database survey  

Given the various applications found for tin di­thio­carbamates, it is not surprising that there exists a relatively large number of structures for this class of compound. Indeed, a search of the Cambridge Structural Database (CSD; Groom et al., 2016), reveals over 300 ‘hits’. Structural surveys have revealed that very different coordination geometries can arise in the solid state and, even when a common structural motif is adopted, non-systematic variations in geometric parameters are observed (Tiekink, 2008; Muthalib et al., 2014). Mononuclear diorganotin bis­(di­thio­carbamate)s, i.e. directly related to (I) and (II) described herein, are well represented, there being about 90 examples. Four distinct structural motifs have been noted previously (Tiekink, 2008), and these are illustrated in Fig. 9. The two most common motifs are skewed trapezoidal bipyramidal as in (II), Fig. 9 a, and distorted octa­hedral, as in (I), Fig. 9 c. Less common are five-coordinate, trigonal–bipyramidal species, arising as one di­thio­carbamate ligand is monodentate, Fig. 9 b, are found, for example, in the structure of (t-Bu)2Sn(S2CNMe2)2 (Kim et al., 1987) and correlated with bulky tin-bound groups, and seven-coordinate species, penta­gonal–bipyramidal, owing to additional coordination by a heteroatom of the tin-bound residue, Fig. 9 d, as for example in the structure of [MeOC(=O)CH2CH2]2Sn(S2CNMe)2 (Ng et al., 1989).

Figure 9.

Figure 9

Four structural motifs for mol­ecules of the general composition R 2Sn(S2CNRR′′)2: (a) skew trapezoidal bipyramidal, (b) five-coordinate trigonal–bipyramidal owing to a monodentate di­thio­carbamate ligand, (c) cis-octa­hedral and (d) seven-coordinate penta­gonal–bipyramidal owing to additional coordination by a heteroatom of the tin-bound residue. In all images, H atoms have been omitted, only the α-C atoms bound to nitro­gen included and, in all but (d), only the α-C atom of the tin-bound residues shown.

There are 16 di­phenyl­tin bis­(di­thio­carbamate) structures included in the CSD and eight of these adopt the motif shown in Fig. 9 c, including both the monoclinic (Lindley & Carr, 1974) and twofold symmetric tetra­gonal (Hook et al., 1994) polymorphs of the archetype compound Ph2Sn(S2CNEt2)2, and eight adopt the motif shown in Fig. 9 a, including both independent mol­ecules of Ph2Sn[S2CN(Me)Hex]2 (Ramasamy et al., 2013); the remaining structures are single phase and have one independent mol­ecule. Such an even split suggests a fine energy balance between the adoption of one geometry over the other.

Synthesis and crystallization  

Synthesis of (I). (2-Meth­oxy­eth­yl)methyl­amine (2 mmol) dissolved in ethanol (10 ml) was stirred in an ice-bath for 30 min. A 25% ammonia solution (1–2 ml) was added to generate a basic solution. Then, a cold ethano­lic solution of carbon di­sulfide (2 mmol) was added to the solution and stirred for about 2 h. Next, di­phenyl­tin(IV) dichloride (1 mmol) dissolved in ethanol was added into the solution and further stirred for 2 h. The precipitate that formed was filtered off and washed a few times with cold ethanol to remove impurities. Finally, the precipitate was dried in a desiccator. Recrystallization was by dissolving the compound with chloro­form and ethanol (2:1 v/v) ratio. This mixture was allowed to slowly evaporate at room temperature yielding colourless crystals of (I). m.p. 382–384 K. Yield: 78%. IR (cm−1): 1,497 ν(C—N), 988 ν(C—S), 523 ν(Sn—C), 389 ν(Sn—S). 1H NMR (CDCl3): δ 7.28–8.00 (5H, Sn–Ph), 3.97 (2H, OCH2), 3.69 (2H, NCH2), 3.44 (3H, NMe), 3.36 (3H, OCH3). 13C NMR (CDCl3): δ 199.88 (S2C), 128.24–151.24 (Sn–Ar), 69.96 (OCH2), 59.06 (NCH2), 57.84 (OCH3), 45.45 (NCH3).

Compound (II) was prepared and recrystallized in essentially the same manner but using bis­(2-meth­oxy­eth­yl)amine (10 mmol) in place of (2-meth­oxy­eth­yl)methyl­amine. m.p. 333–335 K. Yield: 76%. IR (cm−1): 1,482 ν(C—N), 985 ν(C—S), 571 ν(Sn—C), 381 ν(Sn—S). 1H NMR (CDCl3): 7.38–7.89 (5H, Sn–Ph), 4.07 (2H, OCH2), 3.77 (2H, NCH2), 3.35 (OCH3). 13C NMR (CDCl3): δ 200.16 (S2C), 128.26–150.89 (Sn–Ar), 69.90 (OCH2), 59.02 (NCH2), 56.72 (OCH3).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 6. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U iso(H) set to 1.2–1.5U eq(C).

Table 6. Experimental details.

  (I) (II)
Crystal data
Chemical formula [Sn(C6H5)2(C5H10NOS2)2] [Sn(C6H5)2(C7H14NO2S2)2]
M r 601.41 689.51
Crystal system, space group Monoclinic, C2/c Triclinic, P Inline graphic
Temperature (K) 293 293
a, b, c (Å) 18.3808 (14), 8.2809 (4), 19.083 (3) 7.4386 (4), 14.3334 (8), 16.5398 (10)
α, β, γ (°) 90, 118.071 (8), 90 110.320 (5), 91.282 (5), 101.865 (4)
V3) 2562.9 (5) 1609.93 (17)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.34 1.09
Crystal size (mm) 0.25 × 0.25 × 0.20 0.30 × 0.25 × 0.25
 
Data collection
Diffractometer Agilent Technologies SuperNova Dual diffractometer with Atlas detector Agilent Technologies SuperNova Dual diffractometer with Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2015) Multi-scan (CrysAlis PRO; Agilent, 2015)
T min, T max 0.815, 1.000 0.756, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7357, 3383, 3051 17063, 8354, 6973
R int 0.025 0.035
(sin θ/λ)max−1) 0.712 0.712
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.026, 0.063, 1.07 0.031, 0.078, 1.06
No. of reflections 3383 8354
No. of parameters 143 338
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.30 0.66, −0.56

Computer programs: CrysAlis PRO (Agilent, 2015), SHELXL97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989016011385/hb7599sup1.cif

e-72-01130-sup1.cif (849.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016011385/hb7599Isup2.hkl

e-72-01130-Isup2.hkl (270.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016011385/hb7599IIsup3.hkl

e-72-01130-IIsup3.hkl (663.2KB, hkl)

CCDC references: 1492701, 1492700

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by grant FRGS/2/2013/SKK10/UKM/02/1. We gratefully acknowledge the School of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia for providing the essential laboratory facilities. We would also like to thank the laboratory assistants of the Faculty Science and Technology, Universiti Kebangsaan Malaysia for technical support. Intensity data were collected in the University of Malaya Crystallographic Laboratory.

supplementary crystallographic information

(I) Bis[N,N-bis(2-methoxyethyl)dithiocarbamato-κ2S,S']diphenyltin(IV) . Crystal data

[Sn(C6H5)2(C5H10NOS2)2] F(000) = 1224
Mr = 601.41 Dx = 1.559 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 18.3808 (14) Å Cell parameters from 3633 reflections
b = 8.2809 (4) Å θ = 4.2–29.9°
c = 19.083 (3) Å µ = 1.34 mm1
β = 118.071 (8)° T = 293 K
V = 2562.9 (5) Å3 Block, colourless
Z = 4 0.25 × 0.25 × 0.20 mm

(I) Bis[N,N-bis(2-methoxyethyl)dithiocarbamato-κ2S,S']diphenyltin(IV) . Data collection

Agilent Technologies SuperNova Dual diffractometer with Atlas detector 3383 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 3051 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.025
Detector resolution: 10.4041 pixels mm-1 θmax = 30.4°, θmin = 4.0°
ω scan h = −26→18
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2015) k = −11→11
Tmin = 0.815, Tmax = 1.000 l = −25→26
7357 measured reflections

(I) Bis[N,N-bis(2-methoxyethyl)dithiocarbamato-κ2S,S']diphenyltin(IV) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0284P)2 + 0.8262P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
3383 reflections Δρmax = 0.47 e Å3
143 parameters Δρmin = −0.30 e Å3

(I) Bis[N,N-bis(2-methoxyethyl)dithiocarbamato-κ2S,S']diphenyltin(IV) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(I) Bis[N,N-bis(2-methoxyethyl)dithiocarbamato-κ2S,S']diphenyltin(IV) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn 0.5000 0.56549 (2) 0.7500 0.03252 (7)
S1 0.65567 (3) 0.64166 (6) 0.82876 (3) 0.04210 (12)
S2 0.52661 (3) 0.81055 (7) 0.84973 (4) 0.04728 (13)
O1 0.77790 (11) 1.16594 (19) 0.88988 (10) 0.0563 (4)
N1 0.68188 (11) 0.90857 (19) 0.91561 (10) 0.0391 (4)
C1 0.62737 (11) 0.8001 (2) 0.87001 (11) 0.0350 (4)
C2 0.65719 (17) 1.0454 (3) 0.94849 (16) 0.0568 (6)
H2A 0.6227 1.1170 0.9063 0.068*
H2B 0.7054 1.1024 0.9858 0.068*
H2C 0.6273 1.0063 0.9749 0.068*
C3 0.76876 (13) 0.9020 (3) 0.93400 (13) 0.0458 (5)
H3A 0.7836 0.7905 0.9316 0.055*
H3B 0.8025 0.9398 0.9879 0.055*
C4 0.78779 (13) 1.0011 (3) 0.87883 (13) 0.0464 (5)
H4A 0.8440 0.9808 0.8893 0.056*
H4B 0.7511 0.9709 0.8243 0.056*
C5 0.80091 (16) 1.2685 (3) 0.84467 (16) 0.0630 (7)
H5A 0.8589 1.2570 0.8620 0.095*
H5B 0.7890 1.3784 0.8516 0.095*
H5C 0.7705 1.2398 0.7896 0.095*
C11 0.52133 (11) 0.3974 (2) 0.67451 (11) 0.0337 (4)
C12 0.57526 (14) 0.2710 (3) 0.71091 (13) 0.0470 (5)
H12 0.6002 0.2605 0.7659 0.056*
C13 0.59275 (15) 0.1597 (3) 0.66667 (15) 0.0552 (6)
H13 0.6294 0.0758 0.6920 0.066*
C14 0.55615 (14) 0.1732 (3) 0.58582 (15) 0.0525 (6)
H14 0.5679 0.0986 0.5561 0.063*
C15 0.50225 (14) 0.2964 (3) 0.54873 (13) 0.0512 (5)
H15 0.4771 0.3052 0.4937 0.061*
C16 0.48494 (13) 0.4085 (3) 0.59275 (12) 0.0425 (4)
H16 0.4483 0.4923 0.5669 0.051*

(I) Bis[N,N-bis(2-methoxyethyl)dithiocarbamato-κ2S,S']diphenyltin(IV) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn 0.03241 (10) 0.03268 (10) 0.03421 (10) 0.000 0.01712 (7) 0.000
S1 0.0349 (2) 0.0430 (3) 0.0492 (3) 0.0002 (2) 0.0205 (2) −0.0098 (2)
S2 0.0413 (3) 0.0423 (3) 0.0667 (4) −0.0031 (2) 0.0324 (3) −0.0114 (2)
O1 0.0732 (11) 0.0438 (8) 0.0706 (11) −0.0030 (8) 0.0492 (9) 0.0028 (7)
N1 0.0423 (9) 0.0359 (8) 0.0404 (9) −0.0064 (7) 0.0205 (7) −0.0038 (7)
C1 0.0380 (9) 0.0340 (9) 0.0363 (9) −0.0004 (8) 0.0202 (8) 0.0018 (7)
C2 0.0753 (17) 0.0458 (12) 0.0653 (15) −0.0149 (12) 0.0464 (14) −0.0188 (11)
C3 0.0362 (10) 0.0428 (11) 0.0470 (12) −0.0037 (9) 0.0102 (8) 0.0021 (9)
C4 0.0399 (10) 0.0475 (11) 0.0539 (12) −0.0014 (10) 0.0238 (9) −0.0044 (10)
C5 0.0649 (16) 0.0613 (15) 0.0704 (17) −0.0060 (13) 0.0381 (13) 0.0137 (13)
C11 0.0331 (9) 0.0349 (9) 0.0345 (9) −0.0020 (8) 0.0171 (7) −0.0019 (7)
C12 0.0529 (12) 0.0457 (11) 0.0374 (10) 0.0098 (10) 0.0169 (9) 0.0000 (9)
C13 0.0552 (13) 0.0432 (12) 0.0634 (15) 0.0122 (11) 0.0248 (11) −0.0053 (10)
C14 0.0552 (13) 0.0515 (13) 0.0627 (14) −0.0112 (11) 0.0377 (11) −0.0230 (11)
C15 0.0549 (13) 0.0636 (14) 0.0371 (11) −0.0127 (12) 0.0234 (9) −0.0111 (10)
C16 0.0391 (10) 0.0483 (11) 0.0371 (10) 0.0014 (9) 0.0153 (8) 0.0016 (8)

(I) Bis[N,N-bis(2-methoxyethyl)dithiocarbamato-κ2S,S']diphenyltin(IV) . Geometric parameters (Å, º)

Sn—C11 2.1677 (18) C3—H3B 0.9700
Sn—C11i 2.1678 (18) C4—H4A 0.9700
Sn—S1 2.6071 (6) C4—H4B 0.9700
Sn—S1i 2.6071 (6) C5—H5A 0.9600
Sn—S2i 2.6653 (6) C5—H5B 0.9600
Sn—S2 2.6653 (6) C5—H5C 0.9600
S1—C1 1.7311 (19) C11—C16 1.381 (3)
S2—C1 1.7067 (19) C11—C12 1.383 (3)
O1—C4 1.406 (3) C12—C13 1.386 (3)
O1—C5 1.410 (3) C12—H12 0.9300
N1—C1 1.322 (2) C13—C14 1.367 (3)
N1—C3 1.466 (3) C13—H13 0.9300
N1—C2 1.467 (3) C14—C15 1.365 (3)
C2—H2A 0.9600 C14—H14 0.9300
C2—H2B 0.9600 C15—C16 1.386 (3)
C2—H2C 0.9600 C15—H15 0.9300
C3—C4 1.500 (3) C16—H16 0.9300
C3—H3A 0.9700
C11—Sn—C11i 100.07 (10) N1—C3—H3B 108.9
C11—Sn—S1 92.63 (5) C4—C3—H3B 108.9
C11i—Sn—S1 105.36 (5) H3A—C3—H3B 107.7
C11—Sn—S1i 105.36 (5) O1—C4—C3 109.68 (18)
C11i—Sn—S1i 92.63 (5) O1—C4—H4A 109.7
S1—Sn—S1i 152.00 (2) C3—C4—H4A 109.7
C11—Sn—S2i 92.54 (5) O1—C4—H4B 109.7
C11i—Sn—S2i 159.03 (5) C3—C4—H4B 109.7
S1—Sn—S2i 90.591 (19) H4A—C4—H4B 108.2
S1i—Sn—S2i 67.742 (17) O1—C5—H5A 109.5
C11—Sn—S2 159.03 (5) O1—C5—H5B 109.5
C11i—Sn—S2 92.54 (5) H5A—C5—H5B 109.5
S1—Sn—S2 67.744 (17) O1—C5—H5C 109.5
S1i—Sn—S2 90.590 (19) H5A—C5—H5C 109.5
S2i—Sn—S2 80.82 (3) H5B—C5—H5C 109.5
C1—S1—Sn 87.84 (6) C16—C11—C12 118.01 (18)
C1—S2—Sn 86.46 (7) C16—C11—Sn 124.38 (14)
C4—O1—C5 113.31 (18) C12—C11—Sn 117.61 (14)
C1—N1—C3 122.35 (17) C11—C12—C13 120.9 (2)
C1—N1—C2 121.01 (18) C11—C12—H12 119.5
C3—N1—C2 116.62 (18) C13—C12—H12 119.5
N1—C1—S2 121.35 (15) C14—C13—C12 120.1 (2)
N1—C1—S1 121.16 (14) C14—C13—H13 120.0
S2—C1—S1 117.49 (11) C12—C13—H13 120.0
N1—C2—H2A 109.5 C15—C14—C13 119.87 (19)
N1—C2—H2B 109.5 C15—C14—H14 120.1
H2A—C2—H2B 109.5 C13—C14—H14 120.1
N1—C2—H2C 109.5 C14—C15—C16 120.3 (2)
H2A—C2—H2C 109.5 C14—C15—H15 119.9
H2B—C2—H2C 109.5 C16—C15—H15 119.9
N1—C3—C4 113.51 (17) C11—C16—C15 120.8 (2)
N1—C3—H3A 108.9 C11—C16—H16 119.6
C4—C3—H3A 108.9 C15—C16—H16 119.6
C3—N1—C1—S2 179.88 (15) C5—O1—C4—C3 175.27 (19)
C2—N1—C1—S2 −2.0 (3) N1—C3—C4—O1 67.0 (2)
C3—N1—C1—S1 0.0 (3) C16—C11—C12—C13 0.5 (3)
C2—N1—C1—S1 178.13 (16) Sn—C11—C12—C13 −179.24 (17)
Sn—S2—C1—N1 173.67 (16) C11—C12—C13—C14 −0.4 (4)
Sn—S2—C1—S1 −6.47 (10) C12—C13—C14—C15 −0.1 (3)
Sn—S1—C1—N1 −173.53 (16) C13—C14—C15—C16 0.4 (3)
Sn—S1—C1—S2 6.60 (10) C12—C11—C16—C15 −0.2 (3)
C1—N1—C3—C4 93.8 (2) Sn—C11—C16—C15 179.59 (16)
C2—N1—C3—C4 −84.4 (2) C14—C15—C16—C11 −0.3 (3)

Symmetry code: (i) −x+1, y, −z+3/2.

(I) Bis[N,N-bis(2-methoxyethyl)dithiocarbamato-κ2S,S']diphenyltin(IV) . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C11–C16 phenyl ring.

D—H···A D—H H···A D···A D—H···A
C4—H4A···Cg1ii 0.97 2.86 3.730 (3) 150

Symmetry code: (ii) x+1, −y, z+1/2.

(II) Bis[N-(2-methoxyethyl)-N-methyldithiocarbamato-κ2S,S']diphenyltin(IV) . Crystal data

[Sn(C6H5)2(C7H14NO2S2)2] Z = 2
Mr = 689.51 F(000) = 708
Triclinic, P1 Dx = 1.422 Mg m3
a = 7.4386 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 14.3334 (8) Å Cell parameters from 6877 reflections
c = 16.5398 (10) Å θ = 3.8–29.7°
α = 110.320 (5)° µ = 1.09 mm1
β = 91.282 (5)° T = 293 K
γ = 101.865 (4)° Block, colourless
V = 1609.93 (17) Å3 0.30 × 0.25 × 0.25 mm

(II) Bis[N-(2-methoxyethyl)-N-methyldithiocarbamato-κ2S,S']diphenyltin(IV) . Data collection

Agilent Technologies SuperNova Dual diffractometer with Atlas detector 8354 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 6973 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.035
Detector resolution: 10.4041 pixels mm-1 θmax = 30.4°, θmin = 3.3°
ω scan h = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2015) k = −19→19
Tmin = 0.756, Tmax = 1.000 l = −22→18
17063 measured reflections

(II) Bis[N-(2-methoxyethyl)-N-methyldithiocarbamato-κ2S,S']diphenyltin(IV) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0316P)2 + 0.0774P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.002
8354 reflections Δρmax = 0.66 e Å3
338 parameters Δρmin = −0.56 e Å3

(II) Bis[N-(2-methoxyethyl)-N-methyldithiocarbamato-κ2S,S']diphenyltin(IV) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(II) Bis[N-(2-methoxyethyl)-N-methyldithiocarbamato-κ2S,S']diphenyltin(IV) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn 0.53321 (2) 0.25616 (2) 0.25381 (2) 0.04036 (6)
S1 0.34463 (8) 0.37273 (4) 0.23099 (4) 0.05095 (14)
S2 0.75066 (8) 0.44734 (5) 0.23709 (5) 0.05550 (15)
S3 0.22105 (8) 0.15139 (4) 0.26109 (4) 0.04817 (14)
S4 0.53671 (8) 0.06041 (4) 0.27883 (4) 0.04702 (13)
O1 0.3430 (3) 0.61622 (18) 0.10117 (16) 0.1049 (8)
O2 0.6103 (3) 0.75288 (15) 0.38247 (15) 0.0899 (7)
O3 −0.0963 (3) −0.19679 (12) 0.15238 (12) 0.0705 (5)
O4 0.1455 (3) −0.09606 (15) 0.42343 (13) 0.0737 (5)
N1 0.5046 (3) 0.55831 (13) 0.23494 (13) 0.0504 (4)
N2 0.1846 (2) −0.03099 (12) 0.27492 (12) 0.0426 (4)
C1 0.5361 (3) 0.46932 (15) 0.23417 (14) 0.0437 (5)
C2 0.3173 (4) 0.57560 (18) 0.22800 (18) 0.0601 (6)
H2A 0.3202 0.6469 0.2604 0.072*
H2B 0.2358 0.5348 0.2542 0.072*
C3 0.2400 (4) 0.5493 (2) 0.1363 (2) 0.0750 (8)
H3A 0.2446 0.4796 0.1022 0.090*
H3B 0.1121 0.5544 0.1349 0.090*
C4 0.2821 (6) 0.5939 (3) 0.0126 (3) 0.1359 (18)
H4A 0.2869 0.5249 −0.0211 0.204*
H4B 0.3609 0.6400 −0.0090 0.204*
H4C 0.1575 0.6016 0.0082 0.204*
C5 0.6601 (4) 0.64484 (18) 0.24329 (19) 0.0653 (7)
H5A 0.6178 0.6911 0.2202 0.078*
H5B 0.7560 0.6194 0.2093 0.078*
C6 0.7398 (4) 0.70258 (18) 0.3363 (2) 0.0707 (8)
H6A 0.7695 0.6555 0.3620 0.085*
H6B 0.8526 0.7520 0.3387 0.085*
C7 0.6699 (6) 0.8058 (3) 0.4717 (3) 0.1109 (13)
H7A 0.7157 0.7615 0.4951 0.166*
H7B 0.5680 0.8271 0.5018 0.166*
H7C 0.7665 0.8647 0.4787 0.166*
C8 0.3058 (3) 0.05076 (14) 0.27243 (13) 0.0379 (4)
C9 −0.0177 (3) −0.03932 (16) 0.27130 (16) 0.0485 (5)
H9A −0.0407 0.0288 0.2931 0.058*
H9B −0.0687 −0.0744 0.3092 0.058*
C10 −0.1160 (3) −0.09513 (17) 0.18215 (17) 0.0562 (6)
H10A −0.2459 −0.0940 0.1833 0.067*
H10B −0.0646 −0.0617 0.1432 0.067*
C11 −0.1881 (5) −0.2554 (2) 0.0696 (2) 0.0932 (10)
H11A −0.3185 −0.2603 0.0715 0.140*
H11B −0.1642 −0.3226 0.0516 0.140*
H11C −0.1445 −0.2235 0.0293 0.140*
C12 0.2468 (3) −0.11869 (16) 0.28315 (16) 0.0517 (6)
H12A 0.3521 −0.1291 0.2503 0.062*
H12B 0.1485 −0.1796 0.2581 0.062*
C13 0.3001 (4) −0.10467 (19) 0.37586 (18) 0.0602 (6)
H13A 0.3463 −0.1626 0.3775 0.072*
H13B 0.3977 −0.0436 0.4017 0.072*
C14 0.1853 (5) −0.0891 (3) 0.5099 (2) 0.0997 (11)
H14A 0.2197 −0.1503 0.5095 0.150*
H14B 0.0779 −0.0812 0.5404 0.150*
H14C 0.2852 −0.0313 0.5383 0.150*
C21 0.6777 (3) 0.32313 (15) 0.38043 (14) 0.0465 (5)
C22 0.5984 (5) 0.3759 (3) 0.4491 (2) 0.0928 (11)
H22 0.4791 0.3839 0.4411 0.111*
C23 0.6951 (7) 0.4189 (3) 0.5326 (2) 0.1190 (14)
H23 0.6389 0.4546 0.5795 0.143*
C24 0.8694 (6) 0.4084 (3) 0.5450 (2) 0.0970 (11)
H24 0.9330 0.4362 0.6001 0.116*
C25 0.9485 (5) 0.3575 (3) 0.4769 (2) 0.0938 (10)
H25 1.0692 0.3514 0.4846 0.113*
C26 0.8533 (4) 0.3138 (2) 0.3950 (2) 0.0783 (8)
H26 0.9102 0.2773 0.3489 0.094*
C31 0.6273 (3) 0.18363 (15) 0.13244 (14) 0.0434 (5)
C32 0.7940 (4) 0.1564 (2) 0.12717 (18) 0.0705 (7)
H32 0.8682 0.1699 0.1777 0.085*
C33 0.8533 (5) 0.1092 (2) 0.0478 (2) 0.0849 (9)
H33 0.9680 0.0926 0.0452 0.102*
C34 0.7435 (5) 0.0869 (2) −0.0269 (2) 0.0854 (10)
H34 0.7827 0.0541 −0.0802 0.102*
C35 0.5772 (5) 0.1128 (3) −0.02322 (19) 0.0885 (9)
H35 0.5030 0.0979 −0.0741 0.106*
C36 0.5176 (4) 0.1613 (2) 0.05655 (17) 0.0679 (7)
H36 0.4037 0.1788 0.0588 0.081*

(II) Bis[N-(2-methoxyethyl)-N-methyldithiocarbamato-κ2S,S']diphenyltin(IV) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn 0.04240 (9) 0.04311 (9) 0.03293 (9) 0.01125 (6) 0.00010 (6) 0.00979 (6)
S1 0.0453 (3) 0.0431 (3) 0.0648 (4) 0.0074 (2) −0.0022 (3) 0.0219 (3)
S2 0.0474 (3) 0.0555 (3) 0.0646 (4) 0.0082 (3) 0.0016 (3) 0.0251 (3)
S3 0.0418 (3) 0.0453 (3) 0.0620 (4) 0.0144 (2) 0.0033 (3) 0.0225 (3)
S4 0.0401 (3) 0.0506 (3) 0.0527 (3) 0.0140 (2) 0.0016 (2) 0.0195 (3)
O1 0.1032 (17) 0.1125 (17) 0.1005 (19) −0.0200 (14) −0.0375 (14) 0.0683 (15)
O2 0.0898 (15) 0.0732 (12) 0.0901 (16) 0.0321 (12) −0.0235 (13) 0.0031 (11)
O3 0.0802 (13) 0.0559 (9) 0.0617 (12) 0.0067 (9) −0.0153 (10) 0.0105 (8)
O4 0.0601 (11) 0.1001 (13) 0.0594 (12) 0.0032 (10) −0.0044 (9) 0.0357 (11)
N1 0.0556 (11) 0.0430 (9) 0.0524 (12) 0.0066 (9) −0.0052 (9) 0.0202 (8)
N2 0.0421 (9) 0.0402 (8) 0.0448 (11) 0.0111 (8) 0.0011 (8) 0.0136 (7)
C1 0.0486 (12) 0.0456 (11) 0.0344 (11) 0.0073 (10) −0.0027 (9) 0.0136 (9)
C2 0.0646 (16) 0.0489 (12) 0.0689 (18) 0.0157 (12) −0.0036 (13) 0.0227 (12)
C3 0.0669 (17) 0.0748 (17) 0.086 (2) 0.0054 (15) −0.0199 (16) 0.0403 (16)
C4 0.133 (4) 0.164 (4) 0.107 (3) −0.033 (3) −0.053 (3) 0.087 (3)
C5 0.0717 (17) 0.0493 (13) 0.077 (2) 0.0013 (12) −0.0020 (15) 0.0326 (13)
C6 0.0644 (16) 0.0480 (13) 0.090 (2) −0.0012 (13) −0.0163 (16) 0.0221 (13)
C7 0.108 (3) 0.094 (2) 0.100 (3) 0.030 (2) −0.032 (2) −0.003 (2)
C8 0.0403 (10) 0.0401 (10) 0.0314 (10) 0.0118 (9) 0.0005 (8) 0.0090 (8)
C9 0.0394 (11) 0.0484 (11) 0.0567 (15) 0.0088 (10) 0.0086 (10) 0.0182 (10)
C10 0.0425 (12) 0.0621 (14) 0.0610 (16) 0.0094 (11) −0.0017 (11) 0.0205 (12)
C11 0.112 (3) 0.0767 (19) 0.065 (2) −0.0041 (19) −0.0185 (19) 0.0101 (15)
C12 0.0549 (13) 0.0387 (11) 0.0620 (16) 0.0134 (10) 0.0037 (12) 0.0172 (10)
C13 0.0572 (15) 0.0578 (13) 0.0698 (18) 0.0119 (12) −0.0072 (13) 0.0296 (13)
C14 0.091 (2) 0.139 (3) 0.065 (2) −0.006 (2) −0.0112 (18) 0.051 (2)
C21 0.0552 (13) 0.0422 (10) 0.0364 (12) 0.0048 (10) −0.0065 (10) 0.0113 (9)
C22 0.078 (2) 0.129 (3) 0.0483 (18) 0.027 (2) −0.0008 (16) 0.0015 (18)
C23 0.134 (4) 0.152 (4) 0.0401 (19) 0.031 (3) 0.005 (2) −0.002 (2)
C24 0.120 (3) 0.095 (2) 0.053 (2) −0.011 (2) −0.034 (2) 0.0211 (17)
C25 0.085 (2) 0.103 (2) 0.083 (3) 0.008 (2) −0.038 (2) 0.032 (2)
C26 0.0730 (18) 0.093 (2) 0.0608 (19) 0.0302 (17) −0.0145 (15) 0.0118 (15)
C31 0.0480 (12) 0.0468 (11) 0.0353 (11) 0.0125 (10) 0.0057 (9) 0.0135 (9)
C32 0.0602 (16) 0.102 (2) 0.0458 (16) 0.0309 (16) 0.0052 (13) 0.0150 (14)
C33 0.0707 (19) 0.113 (2) 0.070 (2) 0.0390 (19) 0.0278 (18) 0.0204 (18)
C34 0.099 (2) 0.102 (2) 0.0453 (18) 0.026 (2) 0.0291 (18) 0.0118 (16)
C35 0.097 (2) 0.124 (3) 0.0359 (16) 0.029 (2) 0.0013 (16) 0.0161 (16)
C36 0.0669 (16) 0.0914 (19) 0.0438 (15) 0.0282 (15) −0.0009 (13) 0.0169 (13)

(II) Bis[N-(2-methoxyethyl)-N-methyldithiocarbamato-κ2S,S']diphenyltin(IV) . Geometric parameters (Å, º)

Sn—C31 2.124 (2) C7—H7C 0.9600
Sn—C21 2.131 (2) C9—C10 1.497 (3)
Sn—S1 2.5060 (6) C9—H9A 0.9700
Sn—S3 2.5230 (6) C9—H9B 0.9700
Sn—S4 2.9800 (6) C10—H10A 0.9700
Sn—S2 2.9875 (6) C10—H10B 0.9700
S1—C1 1.756 (2) C11—H11A 0.9600
S2—C1 1.692 (2) C11—H11B 0.9600
S3—C8 1.752 (2) C11—H11C 0.9600
S4—C8 1.692 (2) C12—C13 1.508 (4)
O1—C3 1.396 (3) C12—H12A 0.9700
O1—C4 1.428 (4) C12—H12B 0.9700
O2—C6 1.403 (3) C13—H13A 0.9700
O2—C7 1.416 (4) C13—H13B 0.9700
O3—C11 1.403 (3) C14—H14A 0.9600
O3—C10 1.407 (3) C14—H14B 0.9600
O4—C13 1.410 (3) C14—H14C 0.9600
O4—C14 1.419 (3) C21—C22 1.351 (4)
N1—C1 1.339 (3) C21—C26 1.364 (4)
N1—C2 1.474 (3) C22—C23 1.410 (5)
N1—C5 1.476 (3) C22—H22 0.9300
N2—C8 1.337 (2) C23—C24 1.355 (5)
N2—C12 1.472 (3) C23—H23 0.9300
N2—C9 1.483 (3) C24—C25 1.335 (5)
C2—C3 1.499 (4) C24—H24 0.9300
C2—H2A 0.9700 C25—C26 1.383 (4)
C2—H2B 0.9700 C25—H25 0.9300
C3—H3A 0.9700 C26—H26 0.9300
C3—H3B 0.9700 C31—C32 1.370 (3)
C4—H4A 0.9600 C31—C36 1.383 (3)
C4—H4B 0.9600 C32—C33 1.381 (4)
C4—H4C 0.9600 C32—H32 0.9300
C5—C6 1.509 (4) C33—C34 1.367 (5)
C5—H5A 0.9700 C33—H33 0.9300
C5—H5B 0.9700 C34—C35 1.359 (5)
C6—H6A 0.9700 C34—H34 0.9300
C6—H6B 0.9700 C35—C36 1.392 (4)
C7—H7A 0.9600 C35—H35 0.9300
C7—H7B 0.9600 C36—H36 0.9300
C31—Sn—C21 130.12 (9) N2—C9—H9A 108.8
C31—Sn—S1 106.70 (6) C10—C9—H9A 108.8
C21—Sn—S1 109.72 (6) N2—C9—H9B 108.8
C31—Sn—S3 108.44 (6) C10—C9—H9B 108.8
C21—Sn—S3 108.85 (6) H9A—C9—H9B 107.7
S1—Sn—S3 82.873 (18) O3—C10—C9 109.5 (2)
C31—Sn—S4 83.63 (5) O3—C10—H10A 109.8
C21—Sn—S4 83.60 (6) C9—C10—H10A 109.8
S1—Sn—S4 147.433 (18) O3—C10—H10B 109.8
S3—Sn—S4 64.591 (16) C9—C10—H10B 109.8
C31—Sn—S2 83.87 (5) H10A—C10—H10B 108.2
C21—Sn—S2 81.92 (6) O3—C11—H11A 109.5
S1—Sn—S2 64.922 (18) O3—C11—H11B 109.5
S3—Sn—S2 147.742 (18) H11A—C11—H11B 109.5
S4—Sn—S2 147.642 (17) O3—C11—H11C 109.5
C1—S1—Sn 94.83 (7) H11A—C11—H11C 109.5
C1—S2—Sn 80.40 (7) H11B—C11—H11C 109.5
C8—S3—Sn 95.15 (7) N2—C12—C13 112.95 (19)
C8—S4—Sn 81.36 (7) N2—C12—H12A 109.0
C3—O1—C4 113.0 (3) C13—C12—H12A 109.0
C6—O2—C7 113.3 (2) N2—C12—H12B 109.0
C11—O3—C10 113.3 (2) C13—C12—H12B 109.0
C13—O4—C14 112.2 (2) H12A—C12—H12B 107.8
C1—N1—C2 122.75 (19) O4—C13—C12 109.9 (2)
C1—N1—C5 120.5 (2) O4—C13—H13A 109.7
C2—N1—C5 116.75 (18) C12—C13—H13A 109.7
C8—N2—C12 121.08 (17) O4—C13—H13B 109.7
C8—N2—C9 123.23 (17) C12—C13—H13B 109.7
C12—N2—C9 115.69 (17) H13A—C13—H13B 108.2
N1—C1—S2 122.83 (17) O4—C14—H14A 109.5
N1—C1—S1 117.81 (17) O4—C14—H14B 109.5
S2—C1—S1 119.36 (12) H14A—C14—H14B 109.5
N1—C2—C3 113.2 (2) O4—C14—H14C 109.5
N1—C2—H2A 108.9 H14A—C14—H14C 109.5
C3—C2—H2A 108.9 H14B—C14—H14C 109.5
N1—C2—H2B 108.9 C22—C21—C26 117.7 (3)
C3—C2—H2B 108.9 C22—C21—Sn 121.2 (2)
H2A—C2—H2B 107.8 C26—C21—Sn 121.12 (19)
O1—C3—C2 109.5 (2) C21—C22—C23 120.5 (3)
O1—C3—H3A 109.8 C21—C22—H22 119.7
C2—C3—H3A 109.8 C23—C22—H22 119.7
O1—C3—H3B 109.8 C24—C23—C22 120.3 (3)
C2—C3—H3B 109.8 C24—C23—H23 119.8
H3A—C3—H3B 108.2 C22—C23—H23 119.8
O1—C4—H4A 109.5 C25—C24—C23 119.1 (3)
O1—C4—H4B 109.5 C25—C24—H24 120.5
H4A—C4—H4B 109.5 C23—C24—H24 120.5
O1—C4—H4C 109.5 C24—C25—C26 120.8 (3)
H4A—C4—H4C 109.5 C24—C25—H25 119.6
H4B—C4—H4C 109.5 C26—C25—H25 119.6
N1—C5—C6 112.0 (2) C21—C26—C25 121.5 (3)
N1—C5—H5A 109.2 C21—C26—H26 119.2
C6—C5—H5A 109.2 C25—C26—H26 119.2
N1—C5—H5B 109.2 C32—C31—C36 118.6 (2)
C6—C5—H5B 109.2 C32—C31—Sn 121.56 (18)
H5A—C5—H5B 107.9 C36—C31—Sn 119.81 (17)
O2—C6—C5 109.2 (2) C31—C32—C33 120.9 (3)
O2—C6—H6A 109.8 C31—C32—H32 119.5
C5—C6—H6A 109.8 C33—C32—H32 119.5
O2—C6—H6B 109.8 C34—C33—C32 120.0 (3)
C5—C6—H6B 109.8 C34—C33—H33 120.0
H6A—C6—H6B 108.3 C32—C33—H33 120.0
O2—C7—H7A 109.5 C35—C34—C33 120.1 (3)
O2—C7—H7B 109.5 C35—C34—H34 120.0
H7A—C7—H7B 109.5 C33—C34—H34 120.0
O2—C7—H7C 109.5 C34—C35—C36 120.1 (3)
H7A—C7—H7C 109.5 C34—C35—H35 119.9
H7B—C7—H7C 109.5 C36—C35—H35 119.9
N2—C8—S4 122.77 (15) C31—C36—C35 120.2 (3)
N2—C8—S3 118.40 (15) C31—C36—H36 119.9
S4—C8—S3 118.83 (11) C35—C36—H36 119.9
N2—C9—C10 113.64 (18)
C2—N1—C1—S2 176.85 (18) C8—N2—C9—C10 95.7 (2)
C5—N1—C1—S2 −3.4 (3) C12—N2—C9—C10 −85.3 (2)
C2—N1—C1—S1 −3.7 (3) C11—O3—C10—C9 178.7 (2)
C5—N1—C1—S1 176.03 (18) N2—C9—C10—O3 63.3 (2)
Sn—S2—C1—N1 173.13 (19) C8—N2—C12—C13 84.5 (3)
Sn—S2—C1—S1 −6.27 (11) C9—N2—C12—C13 −94.4 (2)
Sn—S1—C1—N1 −172.02 (16) C14—O4—C13—C12 176.3 (2)
Sn—S1—C1—S2 7.40 (13) N2—C12—C13—O4 62.5 (3)
C1—N1—C2—C3 −90.2 (3) C26—C21—C22—C23 −0.4 (5)
C5—N1—C2—C3 90.0 (3) Sn—C21—C22—C23 179.4 (3)
C4—O1—C3—C2 177.9 (3) C21—C22—C23—C24 0.4 (6)
N1—C2—C3—O1 −66.0 (3) C22—C23—C24—C25 0.6 (7)
C1—N1—C5—C6 −81.5 (3) C23—C24—C25—C26 −1.6 (6)
C2—N1—C5—C6 98.3 (3) C22—C21—C26—C25 −0.6 (5)
C7—O2—C6—C5 177.4 (2) Sn—C21—C26—C25 179.6 (2)
N1—C5—C6—O2 −68.2 (3) C24—C25—C26—C21 1.7 (5)
C12—N2—C8—S4 −0.3 (3) C36—C31—C32—C33 1.1 (4)
C9—N2—C8—S4 178.62 (16) Sn—C31—C32—C33 179.9 (2)
C12—N2—C8—S3 179.16 (16) C31—C32—C33—C34 −1.5 (5)
C9—N2—C8—S3 −2.0 (3) C32—C33—C34—C35 1.1 (5)
Sn—S4—C8—N2 177.09 (18) C33—C34—C35—C36 −0.4 (5)
Sn—S4—C8—S3 −2.32 (11) C32—C31—C36—C35 −0.4 (4)
Sn—S3—C8—N2 −176.72 (15) Sn—C31—C36—C35 −179.3 (2)
Sn—S3—C8—S4 2.72 (13) C34—C35—C36—C31 0.1 (5)

(II) Bis[N-(2-methoxyethyl)-N-methyldithiocarbamato-κ2S,S']diphenyltin(IV) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13A···O2i 0.97 2.52 3.404 (4) 151

Symmetry code: (i) x, y−1, z.

References

  1. Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
  2. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Ferreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2012). Eur. J. Med. Chem. 58, 493–503. [DOI] [PubMed]
  5. Ferreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2014). Polyhedron, 79, 161–169.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hook, J. M., Linahan, B. M., Taylor, R. L., Tiekink, E. R. T., van Gorkom, L. & Webster, L. K. (1994). Main Group Met. Chem 17, 293–311.
  8. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylo, C., Wolff, S. K., Chenai, C. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  9. Kadu, R., Roy, H. & Singh, V. K. (2015). Appl. Organomet. Chem. 29, 746–755.
  10. Kevin, P., Lewis, D. J., Raftery, J., Malik, M. A. & O’Brien, P. (2015). J. Cryst. Growth, 415, 93–99.
  11. Khan, N., Farina, Y., Lo, K. M., Rajab, N. F. & Awang, N. (2014). J. Mol. Struct. 1076, 403–410.
  12. Khan, N., Farina, Y., Lo, K. M., Rajab, N. F. & Awang, N. (2015). Polyhedron, 85, 754–760.
  13. Kim, K., Ibers, J. A., Jung, O.-S. & Sohn, Y. S. (1987). Acta Cryst. C43, 2317–2319.
  14. Lewis, D. J., Kevin, P., Bakr, O., Muryn, C. A., Malik, M. A. & O’Brien, P. (2014). Inorg. Chem. Front. 1, 577–598.
  15. Lindley, P. F. & Carr, P. (1974). J. Cryst. Mol. Struct. 4, 173–185.
  16. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  17. Muthalib, A. F. A., Baba, I., Khaledi, H., Ali, H. M. & Tiekink, E. R. T. (2014). Z. Kristallogr 229, 39–46.
  18. Ng, S. W., Wei, C., Kumar Das, V. G., Jameson, G. B. & Butcher, R. J. (1989). J. Organomet. Chem. 365, 75–82.
  19. Ramasamy, K., Kuznetsov, V. L., Gopal, K., Malik, M. A., Raftery, J., Edwards, P. P. & O’Brien, P. (2013). Chem. Mater. 25, 266–276.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  24. Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.
  25. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  26. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.
  27. Yu, Y., Yang, H., Wei, Z.-W. & Tang, L.-F. (2014). Heteroat. Chem. 25, 274–281.
  28. Zia-ur-Rehman, Muhammad, N., Ali, S., Butler, I. S. & Meetsma, A. (2011). Inorg. Chim. Acta, 376, 381–388.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989016011385/hb7599sup1.cif

e-72-01130-sup1.cif (849.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016011385/hb7599Isup2.hkl

e-72-01130-Isup2.hkl (270.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016011385/hb7599IIsup3.hkl

e-72-01130-IIsup3.hkl (663.2KB, hkl)

CCDC references: 1492701, 1492700

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES