Abstract
On the basis of multilocus phylogenetic data, Fonsecaea nubica was described in 2010 as a molecular sibling of F. monophora, an established agent of the human skin disease chomoblastomycosis in tropical zones. Genome analysis of these pathogens is mandatory to identify genes involved in the interaction with host and virulence.
GENOME ANNOUNCEMENT
The genus Fonsecaea comprises anamorph members in the Chaetothyriales, an ascomycete order of black yeasts and filamentous relatives covering numerous opportunistic pathogens on humans (1–3). Fonsecaea is one of the prevalent genera of etiologic agents of chromoblastomycosis (4, 5), a chronic, cutaneous, and subcutaneous infection characterized by slowly expanding, polymorphic skin lesions with muriform cells in tissue, provoking a granulomatous immune response (6, 7). The disease occurs preferentially in humans, although some cases have been reported in other mammals (8–10). Several Fonsecaea species are involved as etiologic agents of the disease, i.e., F. pedrosoi, F. monophora, F. nubica, and F. pugnacius, each with different virulence potentials (6, 11). F. nubica was first described in 2010 with type strain CBS 269.64, isolated from a human patient with chromoblastomycosis in west Cameroon (6, 12). Genome analysis of the pathogenic fungus F. nubica is needed to identify genes involved in the interaction with host cells and molecular mechanisms in response to cytotoxic agents (13).
Strain F. nubica CBS 269.64 was grown in Sabouraud’s broth, with shaking at 150 rpm at 28°C for 7 days and DNA was extracted by the cetyltrimethylammonium bromide (CTAB) method with phenol-chloroform/isoamyl alcohol. Total DNA was purified with the microbial DNA UltraClean kit. DNA of F. nubica was used for library construction using the Ion Plus Fragment library kit (Thermo, FisherScientific) and Nextera XT (Illumina) following the manufacturer’s instructions. The libraries were sequenced on an Ion Proton (Thermo, FisherScientific) for single-end reads and in Miseq (Illumina) for paired-end reads. The quality of the reads was assessed by means of FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). The reads were assembled de novo using SPADES v3.6.2 (14). The draft genome comprised 258 contigs and the genome size was 33.7 Mb, with a G+C content of 52.46%. Protein-coding genes were predicted with GeneMark-ES (15). Gap closure was performed with FGAP software (16). Annotation for 11,681 predicted genes were assigned based on similarity searches against the nr database using RAFTS3 (17) and InterProScan (18) comparisons. The genome contained 36 tRNAs identified using ARAGORN (19).
Information about the genome sequence of this black yeast might provide a better understanding of the basic mechanisms of adaptation to requirements of the environmental habitat, and of pathogenicity and virulence.
Nucleotide sequence accession numbers.
This whole-genome shotgun project has been deposited in DDBJ/ENA/GenBank under accession number LVCJ00000000. The version described in this paper is version LVCJ01000000.
ACKNOWLEDGMENTS
This work was supported by Coordination for the Improvement of Higher Education Personnel (CAPES), Brazil; National Council for Scientific and Technological Development (CNPq), Brazil; and CBS-Fungal Biodiversity Center, Utrecht, The Netherlands.
Footnotes
Citation Costa FF, de Hoog S, Raittz RT, Weiss VA, Leão ACR, Bombassaro A, Sun J, Moreno LF, Souza EM, Pedrosa FO, Steffens MBR, Baura V, Tadra-Sfeir MZ, Balsanelli E, Najafzadeh MJ, Gomes RR, Felipe MS, Teixeira M, Santos GD, Xi L, Alves de Castro MA, Vicente VA. 2016. Draft genome sequence of Fonsecaea nubica strain CBS 269.64, causative agent of human chromoblastomycosis. Genome Announc 4(4):e00735-16. doi:10.1128/genomeA.00735-16.
REFERENCES
- 1.Xi L, Sun J, Lu C, Liu H, Xie Z, Fukushima K, Najafzadeh MJ, De Hoog GS. 2009. Molecular diversity of Fonsecaea (Chaetothyriales) causing chromoblastomycosis in southern China. Med Mycol 47:27–33. doi: 10.1080/13693780802468209. [DOI] [PubMed] [Google Scholar]
- 2.Hoog GS, Guarro J, Gené J, Figueras MJ. 2000. Atlas of clinical fungi. Centraalbureau voor Schimmelcultures/Universitat Rovira i Virgili, Utrecht, the Netherlands. [Google Scholar]
- 3.Badali H, Gueidan C, Najafzadeh MJ, Bonifaz A, Van Den Ende AH, de Hoog GS. 2008. Biodiversity of the genus Cladophialophora. Stud Mycol 61:175–191. doi: 10.3114/sim.2008.61.18. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Martinez R, Tovar LJ. 2007. Chromoblastomycosis. Clin Dermatolol 25:188–194. doi: 10.1016/j.clindermatol.2006.05.007. [DOI] [Google Scholar]
- 5.Tanabe H, Kawasaki M, Mochizuki T, Ishizaki H. 2004. Species identification and strain typing of Fonsecaea pedrosoi using ribosomal RNA gene internal transcribed spacer regions. Nippon Ishinkin Gakkai Zasshi 45:105–112. http://doi.org/10.3314/jjmm.45.105. doi: 10.3314/jjmm.45.105. [DOI] [PubMed] [Google Scholar]
- 6.De Hoog GS, Attili-Angelis D, Vicente VA, Van Den Ende AH, Queiroz-Telles F. 2004. Molecular ecology and pathogenic potential of Fonsecaea species. Med Mycol 42:405–416. doi: 10.1080/13693780410001661464. [DOI] [PubMed] [Google Scholar]
- 7.Bonifaz A, Carrasco-Gerard E, Saúl A. 2001. Chromoblastomycosis: clinical and mycologic experience of 51 cases. Mycoses 44:1–7. doi: 10.1046/j.1439-0507.2001.00613.x. [DOI] [PubMed] [Google Scholar]
- 8.Gams W, McGinnis MR. 1983. Phialemonium, a new anamorph genus intermediate between phialophora and Acremonium. Mycologia 75:977–987. doi: 10.2307/3792653. [DOI] [Google Scholar]
- 9.Rippon JW. 1988. Medical mycology, the pathogenic fungi and pathogenic Actionmycetes, 3rd ed. W. B. Saunders, Philadelphia, PA. [Google Scholar]
- 10.De Hoog GS, Queiroz-Telles F, Haase G, Fernandez-Zeppenfeldt G, Attili Angelis D, Gerrits Van Den Ende AH, Matos T, Peltroche-Llacsahuanga H, Pizzirani-Kleiner AA, Rainer J, Richard-Yegres N, Vicente V, Yegres F. 2000. Black fungi: clinical and pathogenic approaches. Med Mycol 38:243–250. [PubMed] [Google Scholar]
- 11.Najafzadeh MJ, Sun J, Vicente VA, Klaassen CH, Bonifaz A, Gerrits Van Den Ende AH, Menken SB, de Hoog GS. 2011. Molecular epidemiology of Fonsecaea species. Emerg Infect Dis 17:464–469. doi: 10.3201/eid1703.100555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Najafzadeh MJ, Sun J, Vicente V, Xi L, van den Ende AH, de Hoog GS. 2010. Fonsecaea nubica sp. nov., a new agent of human chromoblastomycosis revealed using molecular data. Med Mycol 48:800–806. doi: 10.3109/13693780903503081. [DOI] [PubMed] [Google Scholar]
- 13.Najafzadeh MJ, Gueidan C, Badali H, Van Den Ende AH, Xi L, de Hoog GS. 2009. Genetic diversity and species determination in the opportunistic genus Fonsecaea. Med Mycol 47:17–25. doi: 10.1080/13693780802527178. [DOI] [PubMed] [Google Scholar]
- 14.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi: 10.1089/cmb.2012.0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M. 2008. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res 18:1979–1990. doi: 10.1101/gr.081612.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Piro VC, Faoro H, Weiss VA, Steffens MB, Pedrosa FO, Souza EM, Raittz RT. 2014. FGAP: an automated gap closing tool. BMC Res Notes 7:371. doi: 10.1186/1756-0500-7-371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Viale RA, Pedrosa FO, Weiss VA, Guizelini D, Tibaes JH, Marchaukoski JN, Souza EM, Raittz RT. 31 May 2016. RAFTS3: rapid alignment free tool for sequences similarity search. bioRxiv. doi: 10.1101/055269. [DOI] [Google Scholar]
- 18.Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S. 2014. Inter-ProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240. doi: 10.1093/bioinformatics/btu031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16. doi: 10.1093/nar/gkh152. [DOI] [PMC free article] [PubMed] [Google Scholar]