Skip to main content
EJIFCC logoLink to EJIFCC
letter
. 2014 Feb 21;24(3):126–128.

Between-Subject Variation of the Within-Subject Biological Variation

Xavier Fuentes-Arderiu 1,
PMCID: PMC4975186  PMID: 27683447

Recently, the European Federation of Clinical Chemistry Laboratory Medicine (1), within the frame of its Science Committee, has created a working group (WG) on biological variation. In its website (2), this WG describes its structure and its purpose (“Terms for reference”). Some members of this WG and other authors published a very interesting systematic review of data on biological variation for the catalytic concentrations of three enzymes in serum (3). Among other conclusions, the authors stated that published biological variation data for the three enzymes studies demonstrate a wide range of values derived from inconsistent protocols, and also stated that the findings in their review raise concerns around the utility of the data currently available. Examples of publications with these biological variation data are given in references (4) and (5).

I agree absolutely with the conclusions raised by the authors of the systematic review. Nevertheless, may I add some opinion and some objective data that can reinforce the information given by the authors of the systematic review.

In my opinion, the main factor that hampers the use of data of within-subject biological variation for the proposed (by the review’s authors) purposes is the between-subject variation affecting these kind of data. And consequently, a doubt must be cast upon the general application of the usual point estimations of within-subject biological variation, usually expressed as a single value of coefficient of variation.

This opinion is based in my own experience. Some years ago I was doctoral supervisor (dissertation director), working on within-subject biological variation observed during one year (6, 9). These dissertations generated seven articles of different types published in well recognized international scientific journals (10-16). The information shown in Table 1 comes from these dissertations and articles.

Table 1.

Biological quantities and references, number of volunteers involved in each study (n), median, lowest and highest values of the coefficients of variation corresponding to the within-subject biological variation (CVBw) (6-9, 10-16). [Biological quantities are described according to the IFCC and IUPAC recommendations (17)]

Biological quantity (and references) n Median of CVBw Lowest CVBw Highest CVBw
P—Alanine aminotransferase; cat.c. (6) 20 27.7 < 0.1 68.8
Prot.(S)—Albumin; mass fr. (6, 10) 20 4.1 < 0.1 6.9
P—Alkaline phosphatase; c.con. (6) 20 8.2 2.5 24.1
P—α-Amylase; cat.c. (6) 20 8.4 < 0.1 17.0
P—Aspartate aminotransferase; cat.c. (6) 20 16.0 < 0.1 31.6
P—Bilirubin; subst.c. (6) 20 28.9 8.7 43.9
P—Calcium(II); subst.c. (6) 20 2.0 < 0.1 4.1
P—Chloride; subst.c. (6) 20 1.6 < 0.1 3.6
P—Creatine kinase; cat.c. (6) 20 20.0 12.0 49.6
P—Creatininium; subst.c. (6) 20 6.7 1.5 15.7
Prot.(S)—α1-Globulin; mass fr. (6, 10) 20 9.6 < 0.1 35.4
Prot.(S)—α2-Globulin; mass fr. (6, 10) 20 10.4 3.4 17.2
Prot.(S)—β-Globulin; mass fr. (6, 10) 20 9.6 5.3 19.9
Prot.(S)—γ-Globulin; mass fr. (6, 10) 20 11.2 < 0.1 28.3
P—Glucose; subst.c. (6) 20 5.0 2.1 7.0
P—γ-Glutamyltransferase; cat.c. (6) 20 30.1 11.7 63.4
P—Iron(II+III); subst.c. (6) 20 21.6 13.5 36.6
P—Lactate dehydrogenase; cat.c. (6) 20 < 0.1 11.3
P—Phosphate(inorganic); subst.c. (6) 20 8.6 19.3 1.3
P—Potassium ion; subst.c. (6) 20 5.0 1.0 7.7
P—Protein; mass c. (6) 20 3.1 1.6 8.0
P—Sodium ion; subst.c. (6) 20 0.1 < 0.1 1.6
P—Thyrotropin; arb.subst.c. (6) 20 29.6 9.9 46.9
P—Thyroxine; subst.c. (6, 11) 20 8.2 < 0.1 14.4
P—Triiodothyronine; subst.c. (6, 11) 20 9.8 < 0.1 16.6
P—Urate; subst.c. (6) 20 10.2 6.4 23.8
P—Urea; subst.c. (6) 20 13.5 5.0 22.7
P—Cholesterol; subst.c. (7, 15) 40 6.9 2.2 11.0
P—HDL-Cholesterol; subst.c. (7, 15) 40 7.1 3.1 13.5
P—LDL-Cholesterol; subst.c. (7, 15) 40 13.3 6.7 29.0
P—Triglyceride; subst.c. (7, 15) 40 16.7 9.9 36.3
P—Apolipoprotein A-I; mass c. (7, 15) 40 6.4 < 0.1 22.9
P—Apolipoprotein B; mass c. (7, 15) 40 13.5 6.0 27.3
P—Coagulation, tissue factor-induced; rel.time (8, 12) 39 1.7 < 0.1 11.7
P—Coagulation, surface-induced; rel.time (8, 12) 39 < 0.1 < 0.1 8.4
B—Erythrocytes; entitic vol. (8, 13) 39 1.1 0.2 1.8
B—Erythrocytes; num.c. (8, 13) 39 2.8 1.6 5.7
B—Erythrocytes; vol.fr. (8, 13) 39 2.7 1.3 6.0
B—Haemoglobin; mass c. (8, 13) 39 2.7 1.2 5.5
B—Leukocytes; num.c. (8, 13) 39 12.2 3.5 32.3
Lkcs(B)—Lymphocytes; num.fr. (8, 14) 39 < 0.1 < 0.1 23.1
Lkcs(B)—Neutrophils; num.fr. (8, 14) 39 8.6 < 0.1 24.6
B—Thrombocytes; num.c. (8, 13) 39 7.5 < 0.1 16.7
P—Follitropin; arb.subst.c. (9, 16) 20 17.3 6.1 42.9
P—Lutropin; arb.subst.c. (9, 16) 20 24.0 8.9 47.3
P—Testosterone; subst.c. (9, 16) 20 10.9 0.0 21.8

Table 1 shows the number of healthy adult volunteers involved in each study. In all these studies, blood was collected once a month for one year, and only one measurement per sample was performed. Measurements were done the same day of blood collection. For each volunteer, no outliers were detected (simply Dixon statistical test) after pooling the twelve measured values. For each biological quantity, variance corresponding to day-to-day imprecision of the corresponding measuring system, used according a given measurement procedure, was subtracted to the total within-subject variance to obtain the within-subject biological variance (plus the pre-metrological variance, when it is not zero).

Bearing in mind that in each study all the volunteers were treated in the same way, lowest and highest individual coefficients of variation corresponding to the within-subject biological variances shown in Table 1 indicate that standardization of all processes concerned with the estimation on the within-subject biological variance is not sufficient to obtain point estimates (single values) of within-subject biological coefficients of variation which could be useful for the purposes proposed elsewhere. Furthermore, for each biological quantity, when the highest coefficient of variation is greater than 33 %, we can admit that the probability distribution function of the individual coefficients of variation is asymmetric.

References

  • 1.European Federation of Clinical Chemistry Laboratory Medicine. http://efcclm.eu. Accesed: 09 Dec 2013. [Google Scholar]
  • 2.European Federation of Clinical Chemistry Laboratory Medicine. Science Committee. Working Group: Biological Variation. http://efcclm.eu/index.php/wg-biological-variation.html. Accesed: 09 Dec 2013. [Google Scholar]
  • 3.Carobene A, Braga F, Røraas T, Sandberg S, Barlett WA. A systematic review of data on biological variation for alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transferase. Clin Chem Lab Med 2013;51:1997-2007. [DOI] [PubMed] [Google Scholar]
  • 4.Ricós C, Alvarez V, Cava F, García-Lario JV, Hernández A, Jiménez CV, Minchinela J, Perich C, Simon M. Desirable specifications for total error, imprecision, and bias, derived from intra- and inter-individual biologic variation [2012 update]. http://www.westgard.com/biodatabase1.html. Accessed: 09 Dec 2013. [Google Scholar]
  • 5.Sebastián-Gámbaro MA, Lirón-Hernández FJ, Fuentes-Arderiu X. Intra- and inter-individual biological variability data bank. Eur J Clin Chem Clin Biochem 1997;35:845–852. [PubMed] [Google Scholar]
  • 6.Juan-Pereira L. Variabilitat biològica intraindividual de les magnituds bioquímiques. Aplicacions clíniques [dissertation]. Barcelona (Catalonia, Spain): Universitat de Barcelona; 1989. 258 p. Catalan. [Google Scholar]
  • 7.Ortolá-Devesa JB. Estudio de la variabilidad biológica de un conjunto de magnitudes bioquímicas relacionadas con la atherosclerosis: aplicaciones clínicas [dissertation]. València (Spain): Universitat de València; 1992. 361 p. Spanish. [Google Scholar]
  • 8.Dot-Bach D. Estudi de la variabilitat biològica d’algunes magnituds hematològiques. Aplicacions clíniques [dissertation]. Barcelona (Catalonia, Spain): Universitat de Barcelona; 1992. 214 p. Catalan. [Google Scholar]
  • 9.Valero-Politi J. Estudio de la variabilidad biológica de algunas magnitudes bioquímicas relacionadas con la function androgennica masculina clíniques [dissertation]. Barcelona (Catalonia, Spain): Universitat Autòmoma de Barcelona; 1994. 230 p. Spanish. [Google Scholar]
  • 10.Juan-Pereira L, Fuentes-Arderiu X. Intra individual variation of the electrophoretic serum protein fractions. Clin Chem 1989;35:1544. [PubMed] [Google Scholar]
  • 11.Juan-Pereira M.A.L., Navarro M., Fuentes-Arderiu Roca X. More data on the within subject variation of the concentration of thyroxine and triiodothyronine in serum. Clin Chem 1991; 37: 773. [PubMed] [Google Scholar]
  • 12.Dot-Bach D, Miró-Balagué J, Fuentes-Arderiu X. Within subject and between subject biological variation of prothrombin time and activated partal thromboplastin time. Ann Clin Biochem 1992; 29: 422-425. [DOI] [PubMed] [Google Scholar]
  • 13.Dot-Bach D, Miró-Balagué J, Fuentes-Arderiu X. Within subject biological variation of hematological quantities and analytical goals. Arch Pathol Lab Med 1992; 116: 825-826. [PubMed] [Google Scholar]
  • 14.Dot-Bach D, Fuentes-Arderiu X. Biological variation of the leukocyte differential count quantities. Scand J Clin Lab Invest 1992; 52: 607-611. [DOI] [PubMed] [Google Scholar]
  • 15.Ortolá J, Castiñeiras MJ, Fuentes Arderiu X. Application of biological variation data to the selection of serum lipid ratos used as risk markers of coronary hearth disease. Clin Chem 1992;38:56-59. [PubMed] [Google Scholar]
  • 16.Valero-Politi J, Fuentes Arderiu X. Within and between subject biological variation of follitropin, lutropin, testosterone, and sex hormone binding globulin in men. Clin Chem 1993; 39: 1723-1725. [PubMed] [Google Scholar]
  • 17.Magdal Petersen U, Dybkær R, Olesen H. Propertes and units in the clinical laboratory sciences. Part XXIII. The NPU terminology, principles, and implementation: A user’s guide (IUPAC Technical Report). Pure Appl Chem 2012;84:137–165. [DOI] [PubMed] [Google Scholar]

Articles from EJIFCC are provided here courtesy of International Federation of Clinical Chemistry and Laboratory Medicine

RESOURCES