Skip to main content
. 2014 Apr 28;25(1):55–78.

Table 1.

Examples for multivariate models using %fPSA for diagnosis of PCa (1998-2004)

First Author [Ref.]
(n of pts.; % of PCa)
Year Screening Model (ranking) PSA assays (company) tPSA range (ng/ml) contributing factors (if numbered, by value) AUC Specificity at 95% sensitivity
Carlson
(n=3773; 33% PCa)
1998 1999 no yes LR Tosoh (Dianon) 4-20 l.%fPSA, 2.age 3.tPSA n.a. 34 (LR) 23(%fPSA)
Virtanen
(n=212; 25% PCa)
1999 yes l.LR
2. ANN
ProStatus (Wallac) 3-10
(3-45)
l.%fPSA
2.DRE
3.heredity
0.81 (LR for tPSA3-45) %fPSAn.a. n.a.
Finne [58]
(n=656; 23% PCa)
2000 yes 1.ANN
2.LR
ProStatus (Wallac) 4-10 l.%fPSA
2.volume
3.DRE4.tPSA
n.a. 33 (ANN)
24 (LR)
19 (%f PSA)
Babaian
(n=151; 25% PCa)
2000 yes ANN Tandem R
(Beckman Coulter)
2.5-4 %fPSA, tPSA, age, PAP, CK 0.74 ANN
(0.64%fPSA)
51 (ANN)
39 (PSAD)
10(%fPSA)
Horninger
(n=3474; n.a.)
2001 yes ANN
LR
Abbot IMX
(Abbott)
n.a.
PSA>4 or DRE+
age, tPSA, %f PSA, DRE, volume, PSAD, PSAD-TZ, TZ-volume n.a. ~27 (ANN)
~13 (%f PSA)
~13(tPSA)
Stephan
(n=1188; 61% PCa)
2002 no ANN
LR
IMMULITE
(Bayer)
2-20 1.DRE 2.%f PSA
3.volume
4.tPSA5.age
0.86 (ANN)
0.75 (%f PSA)
43 (ANN)
26 (%f PSA)
Remzi
(n=820; 10% PCa)
2003 no ANN, LR AxSYM
(Abbott)
4-10 tPSA,%f PSA, volume, PSAD, PSAD-TZ, TZ-volume 0.83 (ANN)
0.79 (LR)
0.745 (%f PSA)
68 (ANN)
54 (LR)
33.5 (%f PSA)
Finne
(n=1775; 22% PCa)
2004 yes 1. LR
2.ANN
ProStatus (Wallac) 4-10 1.DRE 2.%f PSA 3.volume 4.tPSA 0.764 (LR)
0.760 (ANN)
0.718 (%f PSA)
22 (LR)
19 (ANN)
17(%f PSA)
Sokoll [70]
(n=566; 43% PCa)
2010 not available 0.79 (LR model) 80 45

Abbreviations: AUC: area under the (ROC) curve; n.a.: not available; LR: logistic regression; ANN: artificial neural network, PAP: prostate alkaline phosphatase, CK: creatinkinase; PSAD: PSA density, PSAD-TZ: transition zone density; DRE: digital rectal examination