Abstract
A microinjection technique has resulted in stable transformation of the western predatory mite Metaseiulus occidentalis. Early preblastoderm eggs within gravid females were microinjected. The needle was inserted through the cuticle of gravid females into the egg, or the tissue immediately surrounding the egg. This maternal injection method resulted in relatively high levels of survival and transformation. Transformation was achieved without the aid of any transposase-producing helper plasmid. The predatory mite was transformed with a plasmid containing the Escherichia coli beta-galactosidase gene (lacZ) regulated by the Drosophila hsp70 heat-shock promoter. Putatively transformed lines were isolated based on beta-galactosidase activity in first-generation larvae. Transformation was confirmed in the sixth generation by polymerase chain reaction amplification of a region spanning the Drosophila/E. coli sequences. Amplification of a nested region, also spanning the interspecific boundary, provided further evidence for stable transformation. Maternal microinjection may be adaptable to other beneficial arthropods, particularly other phytoseiid mites. Genetic transformation of M. occidentalis may improve its efficiency as a biological control agent as well as provide a method for investigating details of its physiology and ecology.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldarelli R. M., Lengyel J. A. Transient expression of DNA after ballistic introduction into Drosophila embryos. Nucleic Acids Res. 1990 Oct 11;18(19):5903–5904. doi: 10.1093/nar/18.19.5903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Germeraad S. Genetic transformation in Drosophila by microinjection of DNA. Nature. 1976 Jul 15;262(5565):229–231. doi: 10.1038/262229a0. [DOI] [PubMed] [Google Scholar]
- Lis J. T., Simon J. A., Sutton C. A. New heat shock puffs and beta-galactosidase activity resulting from transformation of Drosophila with an hsp70-lacZ hybrid gene. Cell. 1983 Dec;35(2 Pt 1):403–410. doi: 10.1016/0092-8674(83)90173-3. [DOI] [PubMed] [Google Scholar]
- McGrane V., Carlson J. O., Miller B. R., Beaty B. J. Microinjection of DNA into Aedes triseriatus ova and detection of integration. Am J Trop Med Hyg. 1988 Nov;39(5):502–510. doi: 10.4269/ajtmh.1988.39.502. [DOI] [PubMed] [Google Scholar]
- Miller L. H., Sakai R. K., Romans P., Gwadz R. W., Kantoff P., Coon H. G. Stable integration and expression of a bacterial gene in the mosquito Anopheles gambiae. Science. 1987 Aug 14;237(4816):779–781. doi: 10.1126/science.3039658. [DOI] [PubMed] [Google Scholar]
- Mismer D., Rubin G. M. Analysis of the promoter of the ninaE opsin gene in Drosophila melanogaster. Genetics. 1987 Aug;116(4):565–578. doi: 10.1093/genetics/116.4.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris A. C., Eggleston P., Crampton J. M. Genetic transformation of the mosquito Aedes aegypti by micro-injection of DNA. Med Vet Entomol. 1989 Jan;3(1):1–7. doi: 10.1111/j.1365-2915.1989.tb00467.x. [DOI] [PubMed] [Google Scholar]
- Morris A. C., Schaub T. L., James A. A. FLP-mediated recombination in the vector mosquito, Aedes aegypti. Nucleic Acids Res. 1991 Nov 11;19(21):5895–5900. doi: 10.1093/nar/19.21.5895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson-Rees W. A., Hoy M. A., Roush R. T. Heterochromatinization, chromatin elimination and haploidization in the parahaploid mite Metaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae). Chromosoma. 1980;77(3):263–276. doi: 10.1007/BF00286052. [DOI] [PubMed] [Google Scholar]
- O'brochta D. A., Handler A. M. Mobility of P elements in drosophilids and nondrosophilids. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6052–6056. doi: 10.1073/pnas.85.16.6052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rio D. C., Laski F. A., Rubin G. M. Identification and immunochemical analysis of biologically active Drosophila P element transposase. Cell. 1986 Jan 17;44(1):21–32. doi: 10.1016/0092-8674(86)90481-2. [DOI] [PubMed] [Google Scholar]
- Rio D. C., Rubin G. M. Identification and purification of a Drosophila protein that binds to the terminal 31-base-pair inverted repeats of the P transposable element. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8929–8933. doi: 10.1073/pnas.85.23.8929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
- Rubin G. M., Spradling A. C. Vectors for P element-mediated gene transfer in Drosophila. Nucleic Acids Res. 1983 Sep 24;11(18):6341–6351. doi: 10.1093/nar/11.18.6341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seifert H. S., Chen E. Y., So M., Heffron F. Shuttle mutagenesis: a method of transposon mutagenesis for Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1986 Feb;83(3):735–739. doi: 10.1073/pnas.83.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spradling A. C., Rubin G. M. Transposition of cloned P elements into Drosophila germ line chromosomes. Science. 1982 Oct 22;218(4570):341–347. doi: 10.1126/science.6289435. [DOI] [PubMed] [Google Scholar]
- Steller H., Pirrotta V. A transposable P vector that confers selectable G418 resistance to Drosophila larvae. EMBO J. 1985 Jan;4(1):167–171. doi: 10.1002/j.1460-2075.1985.tb02332.x. [DOI] [PMC free article] [PubMed] [Google Scholar]