Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Aug 15;89(16):7786–7790. doi: 10.1073/pnas.89.16.7786

pH transients evoked by excitatory synaptic transmission are increased by inhibition of extracellular carbonic anhydrase.

J C Chen 1, M Chesler 1
PMCID: PMC49796  PMID: 1380165

Abstract

Excitatory synaptic transmission has been associated with a rapid alkalinization of the brain extracellular space. These pH shifts are markedly increased by acetazolamide, an inhibitor of carbonic anhydrase. Although this effect can be readily explained by inhibition of extracellular carbonic anhydrase, this enzyme has been considered strictly intracellular in the central nervous system. To determine whether these alkaline shifts are regulated by extracellular carbonic anhydrase, we studied the effects of a membrane impermeant, dextran-bound inhibitor of this enzyme. Extracellular alkaline transients, measured with pH-sensitive microelectrodes, were generated in the CA1 region of rat hippocampal slices by repetitive electrical stimulation of Schaeffer collateral fibers or by local ejection of glutamate. More direct alkalinizations were elicited by focal ejection of NaOH in the vicinity of a pH microelectrode. These pH transients were reversibly enhanced by addition of the dextran-bound inhibitor. We conclude that there is significant carbonic anhydrase activity in the extracellular space of the brain. We postulate that this enzyme functions in the regulation and modulation of extracellular pH transients associated with neuronal activity.

Full text

PDF
7786

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astion M. L., Orkand R. K. Electrogenic Na+/HCO3- cotransport in neuroglia. Glia. 1988;1(5):355–357. doi: 10.1002/glia.440010508. [DOI] [PubMed] [Google Scholar]
  2. Borgula G. A., Karwoski C. J., Steinberg R. H. Light-evoked changes in extracellular pH in frog retina. Vision Res. 1989;29(9):1069–1077. doi: 10.1016/0042-6989(89)90054-0. [DOI] [PubMed] [Google Scholar]
  3. Cammer W. Carbonic anhydrase in oligodendrocytes and myelin in the central nervous system. Ann N Y Acad Sci. 1984;429:494–497. doi: 10.1111/j.1749-6632.1984.tb12376.x. [DOI] [PubMed] [Google Scholar]
  4. Cammer W., Sacchi R., Sapirstein V. Immunocytochemical localization of carbonic anhydrase in the spinal cords of normal and mutant (shiverer) adult mice with comparisons among fixation methods. J Histochem Cytochem. 1985 Jan;33(1):45–54. doi: 10.1177/33.1.3917467. [DOI] [PubMed] [Google Scholar]
  5. Cammer W., Tansey F. A. Carbonic anhydrase immunostaining in astrocytes in the rat cerebral cortex. J Neurochem. 1988 Jan;50(1):319–322. doi: 10.1111/j.1471-4159.1988.tb13267.x. [DOI] [PubMed] [Google Scholar]
  6. Carter N. D., Fryer A., Grant A. G., Hume R., Strange R. G., Wistrand P. J. Membrane specific carbonic anhydrase (CAIV) expression in human tissues. Biochim Biophys Acta. 1990 Jul 9;1026(1):113–116. doi: 10.1016/0005-2736(90)90340-t. [DOI] [PubMed] [Google Scholar]
  7. Chen J. C., Chesler M. A bicarbonate-dependent increase in extracellular pH mediated by GABAA receptors in turtle cerebellum. Neurosci Lett. 1990 Aug 14;116(1-2):130–135. doi: 10.1016/0304-3940(90)90398-s. [DOI] [PubMed] [Google Scholar]
  8. Chen J. C., Chesler M. Extracellular alkalinization evoked by GABA and its relationship to activity-dependent pH shifts in turtle cerebellum. J Physiol. 1991 Oct;442:431–446. doi: 10.1113/jphysiol.1991.sp018801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen J. C., Chesler M. Modulation of extracellular pH by glutamate and GABA in rat hippocampal slices. J Neurophysiol. 1992 Jan;67(1):29–36. doi: 10.1152/jn.1992.67.1.29. [DOI] [PubMed] [Google Scholar]
  10. Chesler M., Chan C. Y. Stimulus-induced extracellular pH transients in the in vitro turtle cerebellum. Neuroscience. 1988 Dec;27(3):941–948. doi: 10.1016/0306-4522(88)90197-2. [DOI] [PubMed] [Google Scholar]
  11. Chesler M., Kraig R. P. Intracellular pH of astrocytes increases rapidly with cortical stimulation. Am J Physiol. 1987 Oct;253(4 Pt 2):R666–R670. doi: 10.1152/ajpregu.1987.253.4.R666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chesler M., Rice M. E. Extracellular alkaline-acid pH shifts evoked by iontophoresis of glutamate and aspartate in turtle cerebellum. Neuroscience. 1991;41(1):257–267. doi: 10.1016/0306-4522(91)90214-9. [DOI] [PubMed] [Google Scholar]
  13. Chesler M. The regulation and modulation of pH in the nervous system. Prog Neurobiol. 1990;34(5):401–427. doi: 10.1016/0301-0082(90)90034-e. [DOI] [PubMed] [Google Scholar]
  14. Church G. A., Kimelberg H. K., Sapirstein V. S. Stimulation of carbonic anhydrase activity and phosphorylation in primary astroglial cultures by norepinephrine. J Neurochem. 1980 Apr;34(4):873–879. doi: 10.1111/j.1471-4159.1980.tb09660.x. [DOI] [PubMed] [Google Scholar]
  15. Chvátal A., Jendelová P., Kríz N., Syková E. Stimulation-evoked changes in extracellular pH, calcium and potassium activity in the frog spinal cord. Physiol Bohemoslov. 1988;37(3):203–212. [PubMed] [Google Scholar]
  16. Cragg P., Patterson L., Purves M. J. The pH of brain extracellular fluid in the cat. J Physiol. 1977 Oct;272(1):137–166. doi: 10.1113/jphysiol.1977.sp012038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cserr H. Potassium exchange between cerebrospinal fluid, plasma, and brain. Am J Physiol. 1965 Dec;209(6):1219–1226. doi: 10.1152/ajplegacy.1965.209.6.1219. [DOI] [PubMed] [Google Scholar]
  18. Deitmer J. W. Evidence for glial control of extracellular pH in the leech central nervous system. Glia. 1992;5(1):43–47. doi: 10.1002/glia.440050107. [DOI] [PubMed] [Google Scholar]
  19. Deitmer J. W., Schlue W. R. An inwardly directed electrogenic sodium-bicarbonate co-transport in leech glial cells. J Physiol. 1989 Apr;411:179–194. doi: 10.1113/jphysiol.1989.sp017567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Droz B., Kazimierczak J. Carbonic anhydrase in primary sensory neurons of dorsal root ganglia. Comp Biochem Physiol B. 1987;88(3):713–717. doi: 10.1016/0305-0491(87)90233-1. [DOI] [PubMed] [Google Scholar]
  21. GIACOBINI E. A cytochemical study of the localization of carbonic anhydrase in the nervous system. J Neurochem. 1962 Mar-Apr;9:169–177. doi: 10.1111/j.1471-4159.1962.tb11859.x. [DOI] [PubMed] [Google Scholar]
  22. GIBBONS B. H., EDSALL J. T. RATE OF HYDRATION OF CARBON DIOXIDE AND DEHYDRATION OF CARBONIC ACID AT 25 DEGREES. J Biol Chem. 1963 Oct;238:3502–3507. [PubMed] [Google Scholar]
  23. Geers C., Gros G., Gärtner A. Extracellular carbonic anhydrase of skeletal muscle associated with the sarcolemma. J Appl Physiol (1985) 1985 Aug;59(2):548–558. doi: 10.1152/jappl.1985.59.2.548. [DOI] [PubMed] [Google Scholar]
  24. Hageman G. S., Zhu X. L., Waheed A., Sly W. S. Localization of carbonic anhydrase IV in a specific capillary bed of the human eye. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2716–2720. doi: 10.1073/pnas.88.7.2716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Heming T. A., Geers C., Gros G., Bidani A., Crandall E. D. Effects of dextran-bound inhibitors on carbonic anhydrase activity in isolated rat lungs. J Appl Physiol (1985) 1986 Nov;61(5):1849–1856. doi: 10.1152/jappl.1986.61.5.1849. [DOI] [PubMed] [Google Scholar]
  26. Jarolimek W., Misgeld U., Lux H. D. Activity dependent alkaline and acid transients in guinea pig hippocampal slices. Brain Res. 1989 Dec 29;505(2):225–232. doi: 10.1016/0006-8993(89)91447-9. [DOI] [PubMed] [Google Scholar]
  27. Javaheri S., De Hemptinne A., Vanheel B., Leusen I. Changes in brain ECF pH during metabolic acidosis and alkalosis: a microelectrode study. J Appl Physiol Respir Environ Exerc Physiol. 1983 Dec;55(6):1849–1853. doi: 10.1152/jappl.1983.55.6.1849. [DOI] [PubMed] [Google Scholar]
  28. Kaila K., Paalasmaa P., Taira T., Voipio J. pH transients due to monosynaptic activation of GABAA receptors in rat hippocampal slices. Neuroreport. 1992 Jan;3(1):105–108. doi: 10.1097/00001756-199201000-00028. [DOI] [PubMed] [Google Scholar]
  29. Kaila K., Saarikoski J., Voipio J. Mechanism of action of GABA on intracellular pH and on surface pH in crayfish muscle fibres. J Physiol. 1990 Aug;427:241–260. doi: 10.1113/jphysiol.1990.sp018170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kaila K., Voipio J. Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature. 1987 Nov 12;330(6144):163–165. doi: 10.1038/330163a0. [DOI] [PubMed] [Google Scholar]
  31. Karlmark B., Agerup B., Wistrand P. J. Renal proximal tubular acidification. Role of brush-border and cytoplasmic carbonic anhydrase. Acta Physiol Scand. 1979 Jun;106(2):145–150. doi: 10.1111/j.1748-1716.1979.tb06383.x. [DOI] [PubMed] [Google Scholar]
  32. Kraig R. P., Ferreira-Filho C. R., Nicholson C. Alkaline and acid transients in cerebellar microenvironment. J Neurophysiol. 1983 Mar;49(3):831–850. doi: 10.1152/jn.1983.49.3.831. [DOI] [PubMed] [Google Scholar]
  33. Kumpulainen T., Nyström S. H. Immunohistochemical localization of carbonic anhydrase isoenzyme C in human brain. Brain Res. 1981 Sep 7;220(1):220–225. doi: 10.1016/0006-8993(81)90230-4. [DOI] [PubMed] [Google Scholar]
  34. Langley O. K., Ghandour M. S., Vincendon G., Gombos G. Carbonic anhydrase: an ultrastructural study in rat cerebellum. Histochem J. 1980 Jul;12(4):473–483. doi: 10.1007/BF01011962. [DOI] [PubMed] [Google Scholar]
  35. Lucci M. S., Tinker J. P., Weiner I. M., DuBose T. D., Jr Function of proximal tubule carbonic anhydrase defined by selective inhibition. Am J Physiol. 1983 Oct;245(4):F443–F449. doi: 10.1152/ajprenal.1983.245.4.F443. [DOI] [PubMed] [Google Scholar]
  36. Lönnerholm G., Ridderstråle Y. Intracellular distribution of carbonic anhydrase in the rat kidney. Kidney Int. 1980 Feb;17(2):162–174. doi: 10.1038/ki.1980.20. [DOI] [PubMed] [Google Scholar]
  37. MAREN T. H. Carbonic anhydrase kinetics and inhibition at 37 degrees: an approach to reaction rates in vivo. J Pharmacol Exp Ther. 1963 Feb;139:129–139. [PubMed] [Google Scholar]
  38. Maren T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967 Oct;47(4):595–781. doi: 10.1152/physrev.1967.47.4.595. [DOI] [PubMed] [Google Scholar]
  39. Masuzawa T., Hasegawa T., Nakahara N., Iida K., Sato F. Localization of carbonic anhydrase in the rat choroid plexus epithelial cell. Ann N Y Acad Sci. 1984;429:405–407. doi: 10.1111/j.1749-6632.1984.tb12365.x. [DOI] [PubMed] [Google Scholar]
  40. Ridderstråle Y., Hanson M. Histochemical study of the distribution of carbonic anhydrase in the cat brain. Acta Physiol Scand. 1985 Aug;124(4):557–564. doi: 10.1111/j.1748-1716.1985.tb00048.x. [DOI] [PubMed] [Google Scholar]
  41. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  42. Roussel G., Delaunoy J. P., Nussbaum J. L., Mandel P. Demonstration of a specific localization of carbonic anhydrase C in the glial cells of rat CNS by an immunohistochemical method. Brain Res. 1979 Jan 5;160(1):47–55. doi: 10.1016/0006-8993(79)90599-7. [DOI] [PubMed] [Google Scholar]
  43. Ryan U. S., Whitney P. L., Ryan J. W. Localization of carbonic anhydrase on pulmonary artery endothelial cells in culture. J Appl Physiol Respir Environ Exerc Physiol. 1982 Oct;53(4):914–919. doi: 10.1152/jappl.1982.53.4.914. [DOI] [PubMed] [Google Scholar]
  44. Sapirstein V. S., Strocchi P., Gilbert J. M. Properties and function of brain carbonic anhydrase. Ann N Y Acad Sci. 1984;429:481–493. doi: 10.1111/j.1749-6632.1984.tb12375.x. [DOI] [PubMed] [Google Scholar]
  45. Tang C. M., Dichter M., Morad M. Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6445–6449. doi: 10.1073/pnas.87.16.6445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Thomas R. C., Meech R. W. Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature. 1982 Oct 28;299(5886):826–828. doi: 10.1038/299826a0. [DOI] [PubMed] [Google Scholar]
  47. Tinker J. P., Coulson R., Weiner I. M. Dextran-bound inhibitors of carbonic anhydrase. J Pharmacol Exp Ther. 1981 Sep;218(3):600–607. [PubMed] [Google Scholar]
  48. Trachtenberg M. C., Sapirstein V. S. Carbonic anhydrase distributions in central and peripheral nervous system of the rat. Neurochem Res. 1980 May;5(5):573–581. doi: 10.1007/BF00964994. [DOI] [PubMed] [Google Scholar]
  49. Traynelis S. F., Cull-Candy S. G. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature. 1990 May 24;345(6273):347–350. doi: 10.1038/345347a0. [DOI] [PubMed] [Google Scholar]
  50. Walz W. pH shifts evoked by neuronal stimulation in slices of rat hippocampus. Can J Physiol Pharmacol. 1989 Jun;67(6):577–581. doi: 10.1139/y89-092. [DOI] [PubMed] [Google Scholar]
  51. Wistrand P. J. Properties of membrane-bound carbonic anhydrase. Ann N Y Acad Sci. 1984;429:195–206. doi: 10.1111/j.1749-6632.1984.tb12333.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES