Skip to main content
Journal of Clinical Pathology logoLink to Journal of Clinical Pathology
. 1983 Jun;36(6):697–700. doi: 10.1136/jcp.36.6.697

A fluorimetric method for red blood cell sorbitol dehydrogenase activity.

G Vaca, P Zúñiga, C Medina, R Alonso, G González-Quiroga, R I Ortíz-De-Luna, J M Cantú
PMCID: PMC498353  PMID: 6853734

Abstract

A new fluorimetric method for the quantification of red blood cell (RBC) sorbitol dehydrogenase is described. It is based on the oxidation of sorbitol to fructose, in presence of NAD+, catalysed by the RBC-sorbitol dehydrogenase. The quantity of NADH formed is then measured in a filter fluorimeter. Comparison with an indirect spectrophotometric assay yielded good correlation; however, the present method offers several advantages: it is more rapid, simple and inexpensive. It should be useful to screen for sorbitol dehydrogenase deficiency in large numbers of individuals, particularly patients with diabetes or cataracts.

Full text

PDF
697

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barretto O. C., Beutler E. The sorbitol-oxidizing enzyme of red blood cells. J Lab Clin Med. 1975 Apr;85(4):645–649. [PubMed] [Google Scholar]
  2. Beutler E., Guinto E. The reduction of glyceraldehyde by human erythrocytes. L-hexonate dehydrogenase activity. J Clin Invest. 1974 May;53(5):1258–1264. doi: 10.1172/JCI107672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beutler E., Mitchell M. New rapid method for the estimation of red cell galactose-1-phosphate uridyl transferase activity. J Lab Clin Med. 1968 Sep;72(3):527–532. [PubMed] [Google Scholar]
  4. Charlesworth D. Starch-gel electrophoresis of four enzymes from human red blood cells: glyceraldehyde-3-phosphate dehydrogenase, fructoaldolase, glyoxalase II and sorbitol dehydrogenase. Ann Hum Genet. 1972 Apr;35(4):477–484. doi: 10.1111/j.1469-1809.1957.tb01873.x. [DOI] [PubMed] [Google Scholar]
  5. Corder C. N., Braughler J. M., Culp P. A. Quantitative histochemistry of the sorbitol pathway in glomeruli and small arteries of human diabetic kidney. Folia Histochem Cytochem (Krakow) 1979;17(2):137–145. [PubMed] [Google Scholar]
  6. Donald L. J., Wang H. S., Hamerton J. L. Assignment of the sorbitol dehydrogenase locus to human chromosome 15 pter leads to q21. Biochem Genet. 1980 Jun;18(5-6):425–431. doi: 10.1007/BF00484391. [DOI] [PubMed] [Google Scholar]
  7. Gabbay K. H. Hyperglycemia, polyol metabolism, and complications of diabetes mellitus. Annu Rev Med. 1975;26:521–536. doi: 10.1146/annurev.me.26.020175.002513. [DOI] [PubMed] [Google Scholar]
  8. Gabbay K. H., Merola L. O., Field R. A. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science. 1966 Jan 14;151(3707):209–210. doi: 10.1126/science.151.3707.209. [DOI] [PubMed] [Google Scholar]
  9. Gabbay K. H. The sorbitol pathway and the complications of diabetes. N Engl J Med. 1973 Apr 19;288(16):831–836. doi: 10.1056/NEJM197304192881609. [DOI] [PubMed] [Google Scholar]
  10. Ibarra B., Gonzalez-Quiroga G., Vaca G., Diaz M., Rivas F., Cantu J. M. Sorbitol dehydrogenase (EC.1.1.1.14) polymorphism in human seminal plasma. Ann Genet. 1982;25(1):53–55. [PubMed] [Google Scholar]
  11. Morrison A. D., Clements R. S., Jr, Travis S. B., Oski F., Winegrad A. I. Glucose utilization by the polyol pathway in human erythrocytes. Biochem Biophys Res Commun. 1970 Jul 13;40(1):199–205. doi: 10.1016/0006-291x(70)91066-1. [DOI] [PubMed] [Google Scholar]
  12. Morsches B., Holzmann H., Bettingen C. Zum Nachweis der Sorbit-Dehydrogenase in menschlichen Erythrocyten. Klin Wochenschr. 1969 Jun 15;47(12):672–673. doi: 10.1007/BF01884363. [DOI] [PubMed] [Google Scholar]
  13. Torrance J. D. The role of fructose in restoration of organic phosphate compounds in outdated bank blood. J Lab Clin Med. 1973 Sep;82(3):489–499. [PubMed] [Google Scholar]
  14. Travis S. F., Morrison A. D., Clements R. S., Jr, Winegrad A. I., Oski F. A. Metabolic alterations in the human erythrocyte produced by increases in glucose concentration. The role of the polyol pathway. J Clin Invest. 1971 Oct;50(10):2104–2112. doi: 10.1172/JCI106704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Travis S. F., Morrison A. D., Clements R. S., Jr, Winegrad A. I., Oski F. A. The role of the polyol pathway in methaemoglobin reduction in human red cells. Br J Haematol. 1974 Aug;27(4):597–605. doi: 10.1111/j.1365-2141.1974.tb06625.x. [DOI] [PubMed] [Google Scholar]
  16. Vaca G., Ibarra B., Bracamontes M., García-Cruz D., Sánchez-Corona J., Medina C., Wunsch C., González-Quiroga G., Cantú J. M. Red blood cell sorbitol dehydrogenase deficiency in a family with cataracts. Hum Genet. 1982;61(4):338–341. doi: 10.1007/BF00276598. [DOI] [PubMed] [Google Scholar]
  17. van Heyningen R. Sugar alcohols in the pathogenesis of galactose and diabetic cataracts. Birth Defects Orig Artic Ser. 1976;12(3):295–303. [PubMed] [Google Scholar]

Articles from Journal of Clinical Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES