Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Sep 1;89(17):8016–8019. doi: 10.1073/pnas.89.17.8016

Site-directed mutagenesis of histidine residues involved in Cu(II) binding and reduction by sperm whale myoglobin.

B R Van Dyke 1, D A Bakan 1, K A Glover 1, J C Hegenauer 1, P Saltman 1, B A Springer 1, S G Sligar 1
PMCID: PMC49846  PMID: 1518828

Abstract

Sperm whale myoglobin (Mb) reduces Cu(II) through a site-specific mechanism involving complexation by one or more surface histidine residues. Three mutants of Mb, derived from recombinant wild-type Mb, were designed in which surface histidine residues exhibiting strong Cu(II) binding were replaced with amino acids with comparatively poor metal binding characteristics. The kinetics of Cu(II)(Gly)2 reduction by native Mb, recombinant wild-type Mb, and the mutants were compared. Recombinant wild-type Mb reduced Cu(II) at a rate similar to that of native Mb. Two single mutations (His-48----Ala and His-116----Asp) decreased the rate by 31% and 7%, respectively, relative to wild-type Mb and decreased the rate by 38% and 16%, respectively, relative to native Mb. A double mutation (His-113----Ala, His-116----Asp) decreased the rate only slightly more than the single mutation at His-116. Previous NMR studies showed that His-113 exhibits the strongest Cu(II) binding of all surface histidines, but the present experiments suggest that it plays little or no role in the reduction of Cu(II) by Mb. His-48, located 12.7 A from the Fe(II)-heme, participates in one-third of the redox activity of the protein. His-116 appears to play a minor role in the overall redox activity of Mb, but its involvement shows that Mb has the ability to reduce Cu(II) through a histidine residue located more than 20 A from the Fe(II)-heme. These experiments demonstrate that electron transport from the Fe(II)-heme to site-specifically bound Cu(II) can be mediated through multiple pathways in sperm whale Mb.

Full text

PDF
8016

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakan D. A., Saltman P., Thériault Y., Wright P. E. Kinetics and mechanisms of reduction of Cu(II) and Fe(III) complexes by soybean leghemoglobin alpha. Biochim Biophys Acta. 1991 Aug 30;1079(2):182–196. doi: 10.1016/0167-4838(91)90124-i. [DOI] [PubMed] [Google Scholar]
  2. Cowan J. A., Upmacis R. K., Beratan D. N., Onuchic J. N., Gray H. B. Long-range electron transfer in myoglobin. Ann N Y Acad Sci. 1988;550:68–84. doi: 10.1111/j.1749-6632.1988.tb35324.x. [DOI] [PubMed] [Google Scholar]
  3. Dyke B., Hegenauer J., Saltman P., Laurs R. M. Isolation and characterization of a new zinc-binding protein from albacore tuna plasma. Biochemistry. 1987 Jun 2;26(11):3228–3234. doi: 10.1021/bi00385a044. [DOI] [PubMed] [Google Scholar]
  4. Gray H. B., Malmström B. G. Long-range electron transfer in multisite metalloproteins. Biochemistry. 1989 Sep 19;28(19):7499–7505. doi: 10.1021/bi00445a001. [DOI] [PubMed] [Google Scholar]
  5. Hardman K. D., Eylar E. H., Ray D. K., Banaszak L. J., Gurd F. R. Isolation of sperm whale myoglobin by low temperature fractionation with ethanol and metallic ions. J Biol Chem. 1966 Jan 25;241(2):432–442. [PubMed] [Google Scholar]
  6. Hegetschweiler K., Saltman P., Dalvit C., Wright P. E. Kinetics and mechanisms of the oxidation of myoglobin by Fe(III) and Cu(II) complexes. Biochim Biophys Acta. 1987 Apr 30;912(3):384–397. doi: 10.1016/0167-4838(87)90043-4. [DOI] [PubMed] [Google Scholar]
  7. Mayo S. L., Ellis W. R., Jr, Crutchley R. J., Gray H. B. Long-range electron transfer in heme proteins. Science. 1986 Aug 29;233(4767):948–952. doi: 10.1126/science.3016897. [DOI] [PubMed] [Google Scholar]
  8. Morikis D., Champion P. M., Springer B. A., Sligar S. G. Resonance raman investigations of site-directed mutants of myoglobin: effects of distal histidine replacement. Biochemistry. 1989 May 30;28(11):4791–4800. doi: 10.1021/bi00437a041. [DOI] [PubMed] [Google Scholar]
  9. Olson J. S., Mathews A. J., Rohlfs R. J., Springer B. A., Egeberg K. D., Sligar S. G., Tame J., Renaud J. P., Nagai K. The role of the distal histidine in myoglobin and haemoglobin. Nature. 1988 Nov 17;336(6196):265–266. doi: 10.1038/336265a0. [DOI] [PubMed] [Google Scholar]
  10. Phillips G. N., Jr, Arduini R. M., Springer B. A., Sligar S. G. Crystal structure of myoglobin from a synthetic gene. Proteins. 1990;7(4):358–365. doi: 10.1002/prot.340070407. [DOI] [PubMed] [Google Scholar]
  11. Phillips S. E. Structure and refinement of oxymyoglobin at 1.6 A resolution. J Mol Biol. 1980 Oct 5;142(4):531–554. doi: 10.1016/0022-2836(80)90262-4. [DOI] [PubMed] [Google Scholar]
  12. Rifkind J. M., Lauer L. D., Chiang S. C., Li N. C. Copper and the oxidation of hemoglobin: a comparison of horse and human hemoglobins. Biochemistry. 1976 Nov 30;15(24):5337–5343. doi: 10.1021/bi00669a021. [DOI] [PubMed] [Google Scholar]
  13. Springer B. A., Sligar S. G. High-level expression of sperm whale myoglobin in Escherichia coli. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8961–8965. doi: 10.1073/pnas.84.24.8961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Varadarajan R., Zewert T. E., Gray H. B., Boxer S. G. Effects of buried ionizable amino acids on the reduction potential of recombinant myoglobin. Science. 1989 Jan 6;243(4887):69–72. doi: 10.1126/science.2563171. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES