Abstract
To identify some of the structural features determining specific protease recognition of complement components C3 and C4, we used site-specific mutagenesis to construct mutants of murine C3 that are cleaved by the C4-specific C1-s protease. Insertion of three amino acid residues corresponding to residues at the C1-s cleavage site of human C4 into murine C3 at the analogous C3 convertase cleavage site was adequate to render the mutant protein susceptible to C1-s cleavage. In addition, insertion of C3-specific residues at the same site or introduction of the C4-specific residues as substitutions rather than as an insertion also rendered the site susceptible to cleavage, but with 10- to 50-fold lower efficiencies, and insertion of even a single amino acid residue affected recognition by C1-s. Finally, insertion of amino acid residues into mC3 partially inhibited cleavage by the alternative-pathway C3 convertase, with insertion of C3- or C4-specific residues giving about the same level of inhibition. A simple interpretation of these data is that C1-s cleavage is dependent primarily on steric accessibility and on recognition of specific amino acid residues at the cleavage site, whereas C3 convertase cleavage is dependent primarily on specific interactions distal to the cleavage site, with only relatively weak, non-C3-specific interactions at the cleavage site itself.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson M. J., Milner C. M., Cotton R. G., Campbell R. D. The coding sequence of the hemolytically inactive C4A6 allotype of human complement component C4 reveals that a single arginine to tryptophan substitution at beta-chain residue 458 is the likely cause of the defect. J Immunol. 1992 May 1;148(9):2795–2802. [PubMed] [Google Scholar]
- Belt K. T., Carroll M. C., Porter R. R. The structural basis of the multiple forms of human complement component C4. Cell. 1984 Apr;36(4):907–914. doi: 10.1016/0092-8674(84)90040-0. [DOI] [PubMed] [Google Scholar]
- Campbell R. D., Law S. K., Reid K. B., Sim R. B. Structure, organization, and regulation of the complement genes. Annu Rev Immunol. 1988;6:161–195. doi: 10.1146/annurev.iy.06.040188.001113. [DOI] [PubMed] [Google Scholar]
- Ebanks R. O., Jaikaran A. S., Carroll M. C., Anderson M. J., Campbell R. D., Isenman D. E. A single arginine to tryptophan interchange at beta-chain residue 458 of human complement component C4 accounts for the defect in classical pathway C5 convertase activity of allotype C4A6. Implications for the location of a C5 binding site in C4. J Immunol. 1992 May 1;148(9):2803–2811. [PubMed] [Google Scholar]
- Ferreira A., Nussenzweig V., Gigli I. Structural and functional differences between the H-2 controlled Ss and Slp proteins. J Exp Med. 1978 Nov 1;148(5):1186–1197. doi: 10.1084/jem.148.5.1186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haviland D. L., Haviland J. C., Fleischer D. T., Hunt A., Wetsel R. A. Complete cDNA sequence of human complement pro-C5. Evidence of truncated transcripts derived from a single copy gene. J Immunol. 1991 Jan 1;146(1):362–368. [PubMed] [Google Scholar]
- Hortin G. L., Farries T. C., Graham J. P., Atkinson J. P. Sulfation of tyrosine residues increases activity of the fourth component of complement. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1338–1342. doi: 10.1073/pnas.86.4.1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isenman D. E., Podack E. R., Cooper N. R. The interaction of C5 with C3b in free solution: a sufficient condition for cleavage by a fluid phase C3/C5 convertase. J Immunol. 1980 Jan;124(1):326–331. [PubMed] [Google Scholar]
- Isenman D. E. The role of the thioester bond in C3 and C4 in the determination of the conformational and functional states of the molecule. Ann N Y Acad Sci. 1983;421:277–290. doi: 10.1111/j.1749-6632.1983.tb18115.x. [DOI] [PubMed] [Google Scholar]
- Kam C. M., McRae B. J., Harper J. W., Niemann M. A., Volanakis J. E., Powers J. C. Human complement proteins D, C2, and B. Active site mapping with peptide thioester substrates. J Biol Chem. 1987 Mar 15;262(8):3444–3451. [PubMed] [Google Scholar]
- Karp D. R., Capra J. D., Atkinson J. P., Shreffler D. C. Structural and functional characterization of an incompletely processed form of murine C4 and Slp. J Immunol. 1982 May;128(5):2336–2341. [PubMed] [Google Scholar]
- Keogh S. J., Harding D. R., Hardman M. J. The complement component C1s catalysed hydrolysis of peptide 4-nitroanilide substrates. Biochim Biophys Acta. 1987 May 27;913(1):39–44. doi: 10.1016/0167-4838(87)90229-9. [DOI] [PubMed] [Google Scholar]
- Kinoshita T., Dodds A. W., Law S. K., Inoue K. The low C5 convertase activity of the C4A6 allotype of human complement component C4. Biochem J. 1989 Aug 1;261(3):743–748. doi: 10.1042/bj2610743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinoshita T., Takata Y., Kozono H., Takeda J., Hong K. S., Inoue K. C5 convertase of the alternative complement pathway: covalent linkage between two C3b molecules within the trimolecular complex enzyme. J Immunol. 1988 Dec 1;141(11):3895–3901. [PubMed] [Google Scholar]
- Kozono H., Kinoshita T., Kim Y. U., Takata-Kozono Y., Tsunasawa S., Sakiyama F., Takeda J., Hong K., Inoue K. Localization of the covalent C3b-binding site on C4b within the complement classical pathway C5 convertase, C4b2a3b. J Biol Chem. 1990 Aug 25;265(24):14444–14449. [PubMed] [Google Scholar]
- Lundwall A., Wetsel R. A., Domdey H., Tack B. F., Fey G. H. Structure of murine complement component C3. I. Nucleotide sequence of cloned complementary and genomic DNA coding for the beta chain. J Biol Chem. 1984 Nov 25;259(22):13851–13856. [PubMed] [Google Scholar]
- McRae B. J., Lin T. Y., Powers J. C. Mapping the substrate binding site of human C1r and C1s with peptide thioesters. Development of new sensitive substrates. J Biol Chem. 1981 Dec 10;256(23):12362–12366. [PubMed] [Google Scholar]
- Morris K. M., Aden D. P., Knowles B. B., Colten H. R. Complement biosynthesis by the human hepatoma-derived cell line HepG2. J Clin Invest. 1982 Oct;70(4):906–913. doi: 10.1172/JCI110687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller-Eberhard H. J. Molecular organization and function of the complement system. Annu Rev Biochem. 1988;57:321–347. doi: 10.1146/annurev.bi.57.070188.001541. [DOI] [PubMed] [Google Scholar]
- Nonaka M., Nakayama K., Yeul Y. D., Takahashi M. Complete nucleotide and derived amino acid sequences of sex-limited protein (Slp), nonfunctional isotype of the fourth component of mouse complement (C4). J Immunol. 1986 Apr 15;136(8):2989–2993. [PubMed] [Google Scholar]
- Nonaka M., Nakayama K., Yeul Y. D., Takahashi M. Complete nucleotide and derived amino acid sequences of the fourth component of mouse complement (C4). Evolutionary aspects. J Biol Chem. 1985 Sep 15;260(20):10936–10943. [PubMed] [Google Scholar]
- Ogata R. T., Cooper N. R., Bradt B. M., Mathias P., Picchi M. A. Murine complement component C4 and sex-limited protein: identification of amino acid residues essential for C4 function. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5575–5579. doi: 10.1073/pnas.86.14.5575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogata R. T., Sepich D. S. Murine sex-limited protein: complete cDNA sequence and comparison with murine fourth complement component. J Immunol. 1985 Dec;135(6):4239–4244. [PubMed] [Google Scholar]
- Okayama H., Berg P. A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells. Mol Cell Biol. 1983 Feb;3(2):280–289. doi: 10.1128/mcb.3.2.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Picchi M. A., Bradt B. M., Cooper N. R., Ogata R. T. Transfected cDNA directs expression of hemolytically active murine C4 in cultured mouse and monkey cells. Complement Inflamm. 1989;6(6):442–452. doi: 10.1159/000463113. [DOI] [PubMed] [Google Scholar]
- Roos M. H., Atkinson J. P., Shreffler D. C. Molecular characterization of the Ss and Slp (C4) proteins of the mouse H-2 complex: subunit composition, chain size polymorphism, and an intracellular (PRO-Ss) precursor. J Immunol. 1978 Sep;121(3):1106–1115. [PubMed] [Google Scholar]
- Sepich D. S., Noonan D. J., Ogata R. T. Complete cDNA sequence of the fourth component of murine complement. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5895–5899. doi: 10.1073/pnas.82.17.5895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shreffler D. C., Atkinson J. P., Chan A. C., Karp D. R., Killion C. C., Ogata R. T., Rosa P. A. The C4 and Slp genes of the complement region of the murine H-2 major histocompatibility complex. Philos Trans R Soc Lond B Biol Sci. 1984 Sep 6;306(1129):395–403. doi: 10.1098/rstb.1984.0100. [DOI] [PubMed] [Google Scholar]
- Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
- Takata Y., Kinoshita T., Kozono H., Takeda J., Tanaka E., Hong K., Inoue K. Covalent association of C3b with C4b within C5 convertase of the classical complement pathway. J Exp Med. 1987 Jun 1;165(6):1494–1507. doi: 10.1084/jem.165.6.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogt W., Schmidt G., Von Buttlar B., Dieminger L. A new function of the activated third component of complement: binding to C5, an essential step for C5 activation. Immunology. 1978 Jan;34(1):29–40. [PMC free article] [PubMed] [Google Scholar]
- Wetsel R. A., Lundwall A., Davidson F., Gibson T., Tack B. F., Fey G. H. Structure of murine complement component C3. II. Nucleotide sequence of cloned complementary DNA coding for the alpha chain. J Biol Chem. 1984 Nov 25;259(22):13857–13862. [PubMed] [Google Scholar]
- Wetsel R. A., Ogata R. T., Tack B. F. Primary structure of the fifth component of murine complement. Biochemistry. 1987 Feb 10;26(3):737–743. doi: 10.1021/bi00377a013. [DOI] [PubMed] [Google Scholar]
- Ziccardi R. J., Cooper N. R. Modulation of the antigenicity of C1r and C1s by C1 inactivator. J Immunol. 1978 Dec;121(6):2148–2152. [PubMed] [Google Scholar]
- de Bruijn M. H., Fey G. H. Human complement component C3: cDNA coding sequence and derived primary structure. Proc Natl Acad Sci U S A. 1985 Feb;82(3):708–712. doi: 10.1073/pnas.82.3.708. [DOI] [PMC free article] [PubMed] [Google Scholar]