Abstract
The cause of the morphological changes and functional defects in the renal tubule seen in patients with severe potassium depletion is unknown. In man and animals potassium status is a major factor regulating ammonia synthesis in the kidney and urinary ammonium excretion. A primary effect of potassium depletion is to cause an increase in ammoniagenesis by the renal tubular cells. It is proposed that the vacuolation of the renal tubular cells and the functional defects of tubular proteinuria, polyuria, resistance to arginine vasopressin, renal resistance to the action of parathyroid hormone, and increased urinary excretion of N-acetyl-beta-glucosaminidase found in potassium depletion are secondary effects caused by high concentrations of ammonia in the renal tubular cells.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adam W. R., Simpson D. P. Renal mitochondrial glutamine metabolism and dietary potassium and protein content. Kidney Int. 1975 May;7(5):325–330. doi: 10.1038/ki.1975.45. [DOI] [PubMed] [Google Scholar]
- BESKIND H., MUDGE G. H. Effect of potassium deficiency on renal tubular reabsorption and assimilation of glucose. Bull Johns Hopkins Hosp. 1959 May;104(5):252–259. [PubMed] [Google Scholar]
- BLACK D. A. K., MILNE M. D. Experimental potassium depletion in man. Clin Sci. 1952 Nov;11(4):397–415. [PubMed] [Google Scholar]
- BUTLER E. A., FLYNN F. V., HARRIS H., ROBSON E. B. A study of urine proteins by two-dimensional electrophoresis with special reference to the proteinuria of renal tubular disorders. Clin Chim Acta. 1962 Jan;7:34–41. doi: 10.1016/0009-8981(62)90113-4. [DOI] [PubMed] [Google Scholar]
- Beck N., Davis B. B. Impaired renal response to parathyroid hormone in potassium depletion. Am J Physiol. 1975 Jan;228(1):179–183. doi: 10.1152/ajplegacy.1975.228.1.179. [DOI] [PubMed] [Google Scholar]
- Beck N., Webster S. K. Impaired urinary concentrating ability and cyclic AMP in K+-depleted rat kidney. Am J Physiol. 1976 Oct;231(4):1204–1208. doi: 10.1152/ajplegacy.1976.231.4.1204. [DOI] [PubMed] [Google Scholar]
- Bogusky R. T., Lowenstein L. M., Lowenstein J. M. The purine nucleotide cycle. A pathway for ammonia production in the rat kidney. J Clin Invest. 1976 Aug;58(2):326–335. doi: 10.1172/JCI108476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CORCORAN A. C., DUSTAN H. P., PAGE I. H. Renal function in primary aldosteronism. J Clin Invest. 1956 Dec;35(12):1357–1363. doi: 10.1172/JCI103392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conway E. J. Apparatus for the micro-determination of certain volatile substances: The blood ammonia, with observations on normal human blood. Biochem J. 1935 Dec;29(12):2755–2772. doi: 10.1042/bj0292755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conway E. J., Cooke R. Blood ammonia. Biochem J. 1939 Apr;33(4):457–478. doi: 10.1042/bj0330457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DENTON D. A., WYNN V., McDONALD I. R., SIMON S. Renal regulation of the extracellular fluid. II: Renal physiology in electrolyte subtraction. Acta Med Scand Suppl. 1951;261:1–202. [PubMed] [Google Scholar]
- EALES L., LINDER G. C. Primary aldosteronism; some observations on a case in a Cape Coloured woman. Q J Med. 1956 Oct;25(100):539–564. [PubMed] [Google Scholar]
- EARLE D. P., SHERRY S., EICHNA L. W., CONAN N. J. Low potassium syndrome due to defective renal tubular mechanisms for handling potassium. Am J Med. 1951 Sep;11(3):283–301. doi: 10.1016/0002-9343(51)90166-0. [DOI] [PubMed] [Google Scholar]
- FORMAN D. T. RAPID DETERMINATION OF PLASMA AMMONIA BY AN ION-EXCHANGE TECHNIC. Clin Chem. 1964 Jun;10:497–508. [PubMed] [Google Scholar]
- GOLDSTEIN L. RELATION OF RENAL GLUTSMINE TRANSEMINASE-OMEGA-AMIDASE ACTIVITY TO AMMONIA EXCRETION IN THE RAT. Nature. 1964 Mar 21;201:1229–1230. doi: 10.1038/2011229a0. [DOI] [PubMed] [Google Scholar]
- Gips C. H., Wibbens-Alberts M. Ammonia determination in blood using the TCA direct method. Clin Chim Acta. 1968 Oct;22(2):183–186. doi: 10.1016/0009-8981(68)90355-0. [DOI] [PubMed] [Google Scholar]
- HUTH E. J., SQUIRES R. D., ELKINTON J. R. Experimental potassium depletion in normal human subjects. II. Renal and hormonal factors in the development of extracellular alkalosis during depletion. J Clin Invest. 1959 Jul;38(7):1149–1165. doi: 10.1172/JCI103891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hasilik A., Neufeld E. F. Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of mannose residues. J Biol Chem. 1980 May 25;255(10):4946–4950. [PubMed] [Google Scholar]
- Hasilik A., Neufeld E. F. Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J Biol Chem. 1980 May 25;255(10):4937–4945. [PubMed] [Google Scholar]
- Kamm D. E., Strope G. L. Glutamine and glutamate metabolism in renal cortex from potassium-depleted rats. Am J Physiol. 1973 Jun;224(6):1241–1248. doi: 10.1152/ajplegacy.1973.224.6.1241. [DOI] [PubMed] [Google Scholar]
- Kleiner D. The transport of NH3 and NH4+ across biological membranes. Biochim Biophys Acta. 1981 Nov 9;639(1):41–52. doi: 10.1016/0304-4173(81)90004-5. [DOI] [PubMed] [Google Scholar]
- Livesey G., Williams K. E., Knowles S. E., Ballard F. J. Effects of weak bases on the degradation of endogenous and exogenous proteins by rat yolk sacs. Biochem J. 1980 Jun 15;188(3):895–903. doi: 10.1042/bj1880895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall S., Green A., Olefsky J. M. Evidence for recycling of insulin receptors in isolated rat adipocytes. J Biol Chem. 1981 Nov 25;256(22):11464–11470. [PubMed] [Google Scholar]
- McKanna J. A., Haigler H. T., Cohen S. Hormone receptor topology and dynamics: morphological analysis using ferritin-labeled epidermal growth factor. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5689–5693. doi: 10.1073/pnas.76.11.5689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan D. B. Assessment of renal tubular function and damage and their clinical significance. Ann Clin Biochem. 1982 Jul;19(Pt 4):307–313. doi: 10.1177/000456328201900422. [DOI] [PubMed] [Google Scholar]
- Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poole B., Ohkuma S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol. 1981 Sep;90(3):665–669. doi: 10.1083/jcb.90.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RELMAN A. S., SCHWARTZ W. B. The nephropathy of potassium depletion; a clinical and pathological entity. N Engl J Med. 1956 Aug 2;255(5):195–203. doi: 10.1056/NEJM195608022550501. [DOI] [PubMed] [Google Scholar]
- Riches D. W., Stanworth D. R. Primary amines induce selective release of lysosomal enzymes from mouse macrophages. Biochem J. 1980 Jun 15;188(3):933–936. doi: 10.1042/bj1880933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHWARTZ W. B., RELMAN A. S. Metabolic and renal studies in chronic potassium depletion resulting from overuse of laxatives. J Clin Invest. 1953 Mar;32(3):258–271. doi: 10.1172/JCI102735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STANBURY S. W., MACAULAY D. Defects of renal tubular function in the nephrotic syndrome; observations on a nephrotic child with aminoaciduria, glycosuria, polyuria, tubular acidosis, and potassium depletion. Q J Med. 1957 Jan;26(101):7–30. [PubMed] [Google Scholar]
- Sastrasinh S., Tannen R. L. Mechanism by which enhanced ammonia production reduces urinary potassium excretion. Kidney Int. 1981 Sep;20(3):326–331. doi: 10.1038/ki.1981.142. [DOI] [PubMed] [Google Scholar]
- Seglen P. O., Grinde B., Solheim A. E. Inhibition of the lysosomal pathway of protein degradation in isolated rat hepatocytes by ammonia, methylamine, chloroquine and leupeptin. Eur J Biochem. 1979 Apr 2;95(2):215–225. doi: 10.1111/j.1432-1033.1979.tb12956.x. [DOI] [PubMed] [Google Scholar]
- Seglen P. O. Protein degradation in isolated rat hepatocytes is inhibited by ammonia. Biochem Biophys Res Commun. 1975 Sep 2;66(1):44–52. doi: 10.1016/s0006-291x(75)80292-0. [DOI] [PubMed] [Google Scholar]
- Seglen P. O., Reith A. Ammonia inhibition of protein degradation in isolated rat hepatocytes. Quantitative ultrastructural alterations in the lysosomal system. Exp Cell Res. 1976 Jul;100(2):276–280. doi: 10.1016/0014-4827(76)90148-8. [DOI] [PubMed] [Google Scholar]
- Sleeper R. S., Belanger P., Lemieux G., Preuss H. G. Effects of in vitro potassium on ammoniagenesis in rat and canine kidney tissue. Kidney Int. 1982 Feb;21(2):345–353. doi: 10.1038/ki.1982.28. [DOI] [PubMed] [Google Scholar]
- Stone W. J., Balagura S., Pitts R. F. Diffusion equilibrium for ammonia in the kidney of the acidotic dog. J Clin Invest. 1967 Oct;46(10):1603–1608. doi: 10.1172/JCI105652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tada K., Okuda K., Watanabe K., Iimura Y., Yamada S. A new method for screening for hyperammonemia. Eur J Pediatr. 1979 Feb 8;130(2):105–110. doi: 10.1007/BF00442347. [DOI] [PubMed] [Google Scholar]
- Tannen R. L. Ammonia metabolism. Am J Physiol. 1978 Oct;235(4):F265–F277. doi: 10.1152/ajprenal.1978.235.4.F265. [DOI] [PubMed] [Google Scholar]
- Tannen R. L., Kunin A. S. Effect of potassium on ammoniagenesis by renal mitochondria. Am J Physiol. 1976 Jul;231(1):44–51. doi: 10.1152/ajplegacy.1976.231.1.44. [DOI] [PubMed] [Google Scholar]
- Tannen R. L., McGill J. Influence of potassium on renal ammonia production. Am J Physiol. 1976 Oct;231(4):1178–1184. doi: 10.1152/ajplegacy.1976.231.4.1178. [DOI] [PubMed] [Google Scholar]
- Tannen R. L. The effect of uncomplicated potassium depletion on urine acidification. J Clin Invest. 1970 Apr;49(4):813–827. doi: 10.1172/JCI106295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tannen R. L., Wedell E., Moore R. Renal adaptation to a high potassium intake. The role of hydrogen ion. J Clin Invest. 1973 Sep;52(9):2089–2101. doi: 10.1172/JCI107394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toback F. G., Ordónez N. G., Bortz S. L., Spargo B. H. Zonal changes in renal structure and phospholipid metabolism in potassium-deficient rats. Lab Invest. 1976 Feb;34(2):115–124. [PubMed] [Google Scholar]
- de Duve C., de Barsy T., Poole B., Trouet A., Tulkens P., Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974 Sep 15;23(18):2495–2531. doi: 10.1016/0006-2952(74)90174-9. [DOI] [PubMed] [Google Scholar]
- van Ypersele de Strihou C., Dieu J. P. Potassium deficiency acidosis in the dog: effect of sodium and potassium balance on renal response to a chronic acid load. Kidney Int. 1977 May;11(5):335–347. doi: 10.1038/ki.1977.51. [DOI] [PubMed] [Google Scholar]
