Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Sep 1;89(17):8342–8346. doi: 10.1073/pnas.89.17.8342

Endocytosis by antigen presenting cells: dendritic cells are as endocytically active as other antigen presenting cells.

T P Levine 1, B M Chain 1
PMCID: PMC49914  PMID: 1355605

Abstract

Although dendritic cells are the most potent of all antigen presenting cells, they have paradoxically been regarded as having only a minimal capacity for endocytosis, which is a crucial step in antigen processing prior to presentation. Previous studies of dendritic cells, which are only available in small numbers, have been restricted to measurement of long-term endocytosis and so have stressed lysosomal accumulation. Measurement of traffic through late endosomes, which are closely related to the organelle in which antigen processing occurs, has, to date, required large numbers of cells and therefore has not been possible for dendritic cells. To resolve the paradox for dendritic cells, we have developed a flow cytometric assay of fluid-phase endocytosis that assesses late endosomal traffic by kinetic analysis of exocytosis in small numbers of cells. Using this assay, we show that fluid-phase endocytosis--in particular, traffic through late endosomes--is as active in dendritic cells as in other antigen presenting cells.

Full text

PDF
8342

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiba S., Katz S. I. Phenotypic and functional characteristics of in vivo-activated Langerhans cells. J Immunol. 1990 Nov 1;145(9):2791–2796. [PubMed] [Google Scholar]
  2. Aiba S., Katz S. I. The ability of cultured Langerhans cells to process and present protein antigens is MHC-dependent. J Immunol. 1991 Apr 15;146(8):2479–2487. [PubMed] [Google Scholar]
  3. Besterman J. M., Airhart J. A., Woodworth R. C., Low R. B. Exocytosis of pinocytosed fluid in cultured cells: kinetic evidence for rapid turnover and compartmentation. J Cell Biol. 1981 Dec;91(3 Pt 1):716–727. doi: 10.1083/jcb.91.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bomsel M., Prydz K., Parton R. G., Gruenberg J., Simons K. Endocytosis in filter-grown Madin-Darby canine kidney cells. J Cell Biol. 1989 Dec;109(6 Pt 2):3243–3258. doi: 10.1083/jcb.109.6.3243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burgert H. G., Thilo L. Internalization and recycling of plasma membrane glycoconjugates during pinocytosis in the macrophage cell line, P388D1. Kinetic evidence for compartmentation of internalized membranes. Exp Cell Res. 1983 Mar;144(1):127–142. doi: 10.1016/0014-4827(83)90447-0. [DOI] [PubMed] [Google Scholar]
  6. Chain B. M., Kay P. M., Feldmann M. The cellular pathway of antigen presentation: biochemical and functional analysis of antigen processing in dendritic cells and macrophages. Immunology. 1986 Jun;58(2):271–276. [PMC free article] [PubMed] [Google Scholar]
  7. Chesnut R. W., Colon S. M., Grey H. M. Antigen presentation by normal B cells, B cell tumors, and macrophages: functional and biochemical comparison. J Immunol. 1982 Apr;128(4):1764–1768. [PubMed] [Google Scholar]
  8. Crowley M. T., Inaba K., Witmer-Pack M. D., Gezelter S., Steinman R. M. Use of the fluorescence activated cell sorter to enrich dendritic cells from mouse spleen. J Immunol Methods. 1990 Oct 4;133(1):55–66. doi: 10.1016/0022-1759(90)90318-p. [DOI] [PubMed] [Google Scholar]
  9. Ellis J., Chain B. M., Davies D. H., Ibrahim M. A., Katz D. R., Kaye P. M., Lightstone E. Antigen presentation by dendritic cells provides optimal stimulation for the production of interleukin (IL) 2, IL 4 and interferon-gamma by allogeneic T cells. Eur J Immunol. 1991 Nov;21(11):2803–2809. doi: 10.1002/eji.1830211123. [DOI] [PubMed] [Google Scholar]
  10. Geuze H. J., Slot J. W., Schwartz A. L. Membranes of sorting organelles display lateral heterogeneity in receptor distribution. J Cell Biol. 1987 Jun;104(6):1715–1723. doi: 10.1083/jcb.104.6.1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Girolomoni G., Simon J. C., Bergstresser P. R., Cruz P. D., Jr Freshly isolated spleen dendritic cells and epidermal Langerhans cells undergo similar phenotypic and functional changes during short-term culture. J Immunol. 1990 Nov 1;145(9):2820–2826. [PubMed] [Google Scholar]
  12. Griffiths G., Back R., Marsh M. A quantitative analysis of the endocytic pathway in baby hamster kidney cells. J Cell Biol. 1989 Dec;109(6 Pt 1):2703–2720. doi: 10.1083/jcb.109.6.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hopkins C. R., Gibson A., Shipman M., Miller K. Movement of internalized ligand-receptor complexes along a continuous endosomal reticulum. Nature. 1990 Jul 26;346(6282):335–339. doi: 10.1038/346335a0. [DOI] [PubMed] [Google Scholar]
  14. Inaba K., Metlay J. P., Crowley M. T., Steinman R. M. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J Exp Med. 1990 Aug 1;172(2):631–640. doi: 10.1084/jem.172.2.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kapsenberg M. L., Teunissen M. B., Stiekema F. E., Keizer H. G. Antigen-presenting cell function of dendritic cells and macrophages in proliferative T cell responses to soluble and particulate antigens. Eur J Immunol. 1986 Apr;16(4):345–350. doi: 10.1002/eji.1830160405. [DOI] [PubMed] [Google Scholar]
  16. Kämpgen E., Koch N., Koch F., Stöger P., Heufler C., Schuler G., Romani N. Class II major histocompatibility complex molecules of murine dendritic cells: synthesis, sialylation of invariant chain, and antigen processing capacity are down-regulated upon culture. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3014–3018. doi: 10.1073/pnas.88.8.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lanzavecchia A. Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes. Annu Rev Immunol. 1990;8:773–793. doi: 10.1146/annurev.iy.08.040190.004013. [DOI] [PubMed] [Google Scholar]
  18. Larsen C. P., Morris P. J., Austyn J. M. Migration of dendritic leukocytes from cardiac allografts into host spleens. A novel pathway for initiation of rejection. J Exp Med. 1990 Jan 1;171(1):307–314. doi: 10.1084/jem.171.1.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Macatonia S. E., Knight S. C., Edwards A. J., Griffiths S., Fryer P. Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies. J Exp Med. 1987 Dec 1;166(6):1654–1667. doi: 10.1084/jem.166.6.1654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Peters P. J., Neefjes J. J., Oorschot V., Ploegh H. L., Geuze H. J. Segregation of MHC class II molecules from MHC class I molecules in the Golgi complex for transport to lysosomal compartments. Nature. 1991 Feb 21;349(6311):669–676. doi: 10.1038/349669a0. [DOI] [PubMed] [Google Scholar]
  21. Puré E., Inaba K., Crowley M. T., Tardelli L., Witmer-Pack M. D., Ruberti G., Fathman G., Steinman R. M. Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of major histocompatibility complex class II molecules and expression of invariant chain. J Exp Med. 1990 Nov 1;172(5):1459–1469. doi: 10.1084/jem.172.5.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Romani N., Koide S., Crowley M., Witmer-Pack M., Livingstone A. M., Fathman C. G., Inaba K., Steinman R. M. Presentation of exogenous protein antigens by dendritic cells to T cell clones. Intact protein is presented best by immature, epidermal Langerhans cells. J Exp Med. 1989 Mar 1;169(3):1169–1178. doi: 10.1084/jem.169.3.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roosnek E., Demotz S., Corradin G., Lanzavecchia A. Kinetics of MHC-antigen complex formation on antigen-presenting cells. J Immunol. 1988 Jun 15;140(12):4079–4082. [PubMed] [Google Scholar]
  24. Schuler G., Steinman R. M. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med. 1985 Mar 1;161(3):526–546. doi: 10.1084/jem.161.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Steinman R. M., Mellman I. S., Muller W. A., Cohn Z. A. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983 Jan;96(1):1–27. doi: 10.1083/jcb.96.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Steinman R. M. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–296. doi: 10.1146/annurev.iy.09.040191.001415. [DOI] [PubMed] [Google Scholar]
  27. Stössel H., Koch F., Kämpgen E., Stöger P., Lenz A., Heufler C., Romani N., Schuler G. Disappearance of certain acidic organelles (endosomes and Langerhans cell granules) accompanies loss of antigen processing capacity upon culture of epidermal Langerhans cells. J Exp Med. 1990 Nov 1;172(5):1471–1482. doi: 10.1084/jem.172.5.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sunshine G. H., Katz D. R., Czitrom A. A. Heterogeneity of stimulator cells in the murine mixed leukocyte response. Eur J Immunol. 1982 Jan;12(1):9–15. doi: 10.1002/eji.1830120105. [DOI] [PubMed] [Google Scholar]
  29. Swanson J. A., Yirinec B. D., Silverstein S. C. Phorbol esters and horseradish peroxidase stimulate pinocytosis and redirect the flow of pinocytosed fluid in macrophages. J Cell Biol. 1985 Mar;100(3):851–859. doi: 10.1083/jcb.100.3.851. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES