Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jun 10;72(Pt 7):901–903. doi: 10.1107/S2056989016008653

Crystallographic and spectroscopic characterization of (R)-O-acetyl­mandelic acid

Cady Cirbes a, Joseph M Tanski a,*
PMCID: PMC4992902  PMID: 27555927

The title compound is a resolved chiral ester derivative of mandelic acid containing an acetate group and a carb­oxy­lic acid group, which engage in inter­molecular hydrogen bonding, forming chains extending parallel to [001].

Keywords: crystal structure, absolute structure, hydrogen bonding, mandelic acid ester derivative

Abstract

The title compound [systematic name: (R)-(−)-2-acet­oxy-2-phenyl­acetic acid], C10H10O4, is a resolved chiral ester derivative of mandelic acid. The compound contains an acetate group and a carb­oxy­lic acid group, which engage in inter­molecular hydrogen bonding, forming chains extending parallel to [001] with a short donor–acceptor hydrogen-bonding distance of 2.676 (2) Å.

Chemical context  

Chiral, resolved carb­oxy­lic acids have played an important role as chiral NMR shift reagents (Lovely & Wenzel, 2008; Parker, 1991). The title compound, (R)-(−)-2-acet­oxy-2-phenyl­acetic acid (I), commonly known as (R)-O-acetyl­mandelic acid, is a chiral, resolved derivative of mandelic acid. The compound may be synthesized by acetyl­ation of the parent α-hy­droxy acid with acetic anhydride in pyridine (Ornelas et al., 2013). When racemic, resolution of the compound with free amino acids has been demonstrated (Szeleczky et al., 2015). The title compound has been employed as a chiral NMR shift reagent (Parker, 1991).graphic file with name e-72-00901-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound (Fig. 1) shows the R confguration about carbon atom C1, and that the mol­ecule does not engage in intra­molecular or pairwise hydrogen bonding. The absolute structure parameters confirm the R assignment, with Flack x = −0.01 (4) and Hooft y = −0.02 (4), calculated with PLATON (Spek, 2009).

Figure 1.

Figure 1

A view of (R)-(−)-2-acet­oxy-2-phenyl­acetic acid (I) with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Supra­molecular features  

The mol­ecules pack together in the solid state via van der Waals forces and hydrogen bonding between the carb­oxy­lic acid OH group and the carbonyl oxygen atom of the ester on a neighboring mol­ecule, O1—H1⋯O4i [symmetry code (i) −x + Inline graphic, −y + 1, z − Inline graphic] with a donor–acceptor distance of 2.676 (2) Å (Table 1). These inter­actions create zigzag hydrogen-bonded chains that extend parallel to the c axis of the unit cell (Fig. 2). Notably, there is no face-to-face or edge-to-face π-stacking.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.85 (2) 1.84 (2) 2.6761 (16) 165 (2)

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

A view of the inter­molecular hydrogen bonding in (R)-(−)-2-acet­oxy-2-phenyl­acetic acid (I) that forms a one-dimensional chain. Symmetry code: (i) −x + Inline graphic, −y + 1, z − Inline graphic.

Database survey  

The Cambridge Structural Database (Groom et al., 2016) contains several related mandelic acid ester structures. Related structures of resolved mandelic acid esters that differ by the nature of the ester group include (2S)-[(2S)-2-hy­droxy-2-phenyl­ethano­yloxy]phenyl­acetic acid (Mughal et al., 2004) and (1R,2R,3S,4S)-2-[(R)-mandeloxycarbon­yl]bi­cyclo­(2.2.1)heptane-3-carb­oxy­lic acid (Ohtani et al., 1991). The hydrogen bonding in the former differs from (I), forming an inter­molecular chain with the carb­oxy­lic acid groups further cross-linked by hydrogen bonding of the alcohol moiety with the ester, whereas the latter compound exhibits pairwise dimerization of the carb­oxy­lic acid groups. A related structure with a tert-butyl ester and substituents on the phenyl ring, (S,E)-2-[2-(3-methoxy-3-oxoprop-1-en-1-yl)-4-(trifluoromethyl)phenyl]-2-(pivaloyloxy)acetic acid (Xiao et al., 2016), exhibits a similar one-dimensional inter­molecular carb­oxy­lic acid OH⋯ester carbonyl hydrogen-bonding motif to that found in the title compound.

Synthesis and crystallization  

(R)-(−)-2-acet­oxy-2-phenyl­acetic acid (99%) was purchased from Aldrich Chemical Company, USA, and was used as received.

Analytical data  

1H NMR (Bruker Avance 300 MHz, CDCl3): δ 2.19 (s, 3 H, CH3), 5.93 (s, 1H, CH), 7.36–7.42 (m, 3 H, Car­yl H), 7.45–7.51 (m, 2H, Car­yl H), 11.76 (br s, 1H, OH). 13C NMR (13C{1H}, 75.5 MHz, CDCl3): δ 20.59 (CH3), 74.02 (CH), 127.62 (C ar­ylH), 128.86 (C ar­ylH), 129.49 (C ar­ylH), 132.98 (C ar­yl), 170.38 (CO), 174.55 (CO). IR (Thermo Nicolet iS50, ATR, cm−1): 3483 (w), 3014 (v br, O—H str), 2708 (w), 2588 (w), 1752 (v s, C=O str), 1686 (v s, C=O str), 1498 (w), 1461 (w), 1412 (m), 1382 (s), 1321 (m), 1277 (s), 1259 (s), 1206 (s), 1182 (s), 1045 (s), 996 (m), 967 (m), 919 (m), 888 (m), 767 (s), 734 (s), 700 (s), 642 (m), 616 (w), 603 (w), 583 (w), 525 (s), 487 (w). GC/MS (Hewlett-Packard MS 5975/GC 7890): M-18+ = 176 (calc. exact mass 194.06 - water = 176).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model with C–H = 0.95, 0.98 and 1.00 Å and U iso(H) = 1.2, 1.5 and 1.2 × U eq(C) of the aryl, methyl and methine C atoms, respectively. The position of the carb­oxy­lic acid hydrogen atom was found in the difference map and the atom refined semi-freely using a distance restraint d(O—H) = 0.84 Å, and U iso(H) = 1.2U eq(O).

Table 2. Experimental details.

Crystal data
Chemical formula C10H10O4
M r 194.18
Crystal system, space group Orthorhombic, P212121
Temperature (K) 125
a, b, c (Å) 9.1047 (10), 10.0086 (11), 10.5871 (11)
V3) 964.75 (18)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.88
Crystal size (mm) 0.26 × 0.26 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.74, 0.86
No. of measured, independent and observed [I > 2σ(I)] reflections 8953, 1698, 1693
R int 0.030
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.025, 0.062, 1.10
No. of reflections 1698
No. of parameters 131
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.19
Absolute structure Flack x determined using 691 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013); Hooft y calculated with PLATON (Spek, 2009)
Absolute structure parameter −0.01 (4)

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016008653/pk2580sup1.cif

e-72-00901-sup1.cif (273.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016008653/pk2580Isup2.hkl

e-72-00901-Isup2.hkl (136.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016008653/pk2580Isup3.cml

CCDC reference: 1482445

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (Grant Nos. 0521237 and 0911324 to JMT). We acknowledge the Salmon Fund of Vassar College for funding publication expenses.

supplementary crystallographic information

Crystal data

C10H10O4 Dx = 1.337 Mg m3
Mr = 194.18 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121 Cell parameters from 8300 reflections
a = 9.1047 (10) Å θ = 4.2–66.6°
b = 10.0086 (11) Å µ = 0.88 mm1
c = 10.5871 (11) Å T = 125 K
V = 964.75 (18) Å3 Block, colourless
Z = 4 0.26 × 0.26 × 0.17 mm
F(000) = 408

Data collection

Bruker APEXII CCD diffractometer 1698 independent reflections
Radiation source: Cu IuS micro-focus source 1693 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1 Rint = 0.030
φ and ω scans θmax = 66.6°, θmin = 6.1°
Absorption correction: multi-scan (SADABS; Bruker, 2013) h = −10→10
Tmin = 0.74, Tmax = 0.86 k = −11→11
8953 measured reflections l = −12→12

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.1385P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062 (Δ/σ)max < 0.001
S = 1.10 Δρmax = 0.19 e Å3
1698 reflections Δρmin = −0.19 e Å3
131 parameters Absolute structure: Flack x determined using 691 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013); Hooft y calculated with PLATON (Spek, 2009)
1 restraint Absolute structure parameter: −0.01 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.42132 (13) 0.46237 (13) 0.08956 (12) 0.0329 (3)
H1 0.355 (2) 0.479 (2) 0.035 (2) 0.039*
O2 0.35211 (12) 0.66275 (12) 0.16115 (11) 0.0286 (3)
O3 0.50941 (12) 0.63319 (11) 0.37499 (9) 0.0235 (3)
O4 0.29716 (12) 0.53107 (12) 0.42058 (10) 0.0273 (3)
C1 0.53382 (16) 0.53625 (15) 0.27588 (13) 0.0200 (3)
H1A 0.5199 0.4438 0.3097 0.024*
C2 0.69072 (15) 0.55447 (14) 0.23211 (13) 0.0184 (3)
C3 0.79939 (18) 0.47071 (16) 0.27844 (16) 0.0272 (4)
H3A 0.7744 0.3988 0.3329 0.033*
C4 0.94513 (18) 0.49242 (17) 0.2450 (2) 0.0346 (4)
H4A 1.0198 0.4358 0.2776 0.042*
C5 0.98206 (18) 0.59621 (18) 0.16417 (17) 0.0326 (4)
H5A 1.0818 0.6109 0.1418 0.039*
C6 0.87356 (18) 0.67809 (18) 0.11641 (16) 0.0303 (4)
H6A 0.8985 0.7482 0.0599 0.036*
C7 0.72770 (17) 0.65833 (17) 0.15078 (14) 0.0242 (3)
H7A 0.6534 0.7157 0.1187 0.029*
C8 0.42388 (15) 0.56275 (15) 0.16993 (14) 0.0201 (3)
C9 0.38220 (17) 0.62321 (16) 0.43773 (14) 0.0237 (3)
C10 0.3600 (2) 0.7365 (2) 0.52655 (17) 0.0364 (4)
H10A 0.4523 0.7555 0.5707 0.055*
H10B 0.2842 0.7128 0.5883 0.055*
H10C 0.329 0.8158 0.4792 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0273 (6) 0.0350 (6) 0.0363 (6) 0.0053 (5) −0.0144 (5) −0.0139 (5)
O2 0.0270 (6) 0.0289 (6) 0.0298 (6) 0.0060 (5) −0.0008 (5) −0.0001 (5)
O3 0.0209 (5) 0.0298 (6) 0.0198 (5) −0.0061 (4) 0.0051 (4) −0.0055 (4)
O4 0.0232 (5) 0.0335 (6) 0.0253 (6) −0.0066 (5) 0.0058 (4) 0.0003 (5)
C1 0.0197 (7) 0.0209 (7) 0.0193 (7) −0.0032 (6) 0.0012 (6) −0.0020 (6)
C2 0.0171 (7) 0.0207 (7) 0.0173 (7) −0.0019 (6) −0.0001 (5) −0.0046 (6)
C3 0.0249 (8) 0.0232 (8) 0.0334 (8) 0.0001 (7) −0.0030 (7) 0.0014 (7)
C4 0.0214 (7) 0.0329 (9) 0.0496 (11) 0.0066 (7) −0.0035 (8) −0.0042 (8)
C5 0.0184 (7) 0.0424 (9) 0.0370 (9) −0.0037 (7) 0.0061 (7) −0.0119 (8)
C6 0.0276 (8) 0.0394 (9) 0.0238 (8) −0.0093 (8) 0.0042 (7) 0.0016 (7)
C7 0.0215 (7) 0.0301 (8) 0.0210 (7) −0.0005 (6) −0.0010 (6) 0.0037 (6)
C8 0.0149 (7) 0.0237 (7) 0.0216 (7) −0.0034 (6) 0.0036 (5) −0.0010 (6)
C9 0.0213 (7) 0.0315 (8) 0.0184 (7) −0.0036 (7) 0.0033 (6) 0.0021 (6)
C10 0.0390 (10) 0.0389 (10) 0.0311 (9) −0.0082 (9) 0.0139 (8) −0.0076 (8)

Geometric parameters (Å, º)

O1—C8 1.3168 (19) C3—H3A 0.95
O1—H1 0.852 (19) C4—C5 1.387 (3)
O2—C8 1.1989 (19) C4—H4A 0.95
O3—C9 1.3389 (18) C5—C6 1.380 (3)
O3—C1 1.4463 (17) C5—H5A 0.95
O4—C9 1.218 (2) C6—C7 1.391 (2)
C1—C2 1.5128 (19) C6—H6A 0.95
C1—C8 1.527 (2) C7—H7A 0.95
C1—H1A 1.0 C9—C10 1.487 (2)
C2—C3 1.386 (2) C10—H10A 0.98
C2—C7 1.391 (2) C10—H10B 0.98
C3—C4 1.391 (2) C10—H10C 0.98
C8—O1—H1 107.2 (15) C4—C5—H5A 120.1
C9—O3—C1 116.28 (11) C5—C6—C7 120.22 (16)
O3—C1—C2 106.65 (11) C5—C6—H6A 119.9
O3—C1—C8 108.41 (11) C7—C6—H6A 119.9
C2—C1—C8 111.91 (12) C6—C7—C2 119.95 (14)
O3—C1—H1A 109.9 C6—C7—H7A 120.0
C2—C1—H1A 109.9 C2—C7—H7A 120.0
C8—C1—H1A 109.9 O2—C8—O1 125.26 (14)
C3—C2—C7 119.87 (14) O2—C8—C1 124.01 (14)
C3—C2—C1 119.51 (13) O1—C8—C1 110.72 (12)
C7—C2—C1 120.54 (13) O4—C9—O3 122.18 (14)
C2—C3—C4 119.76 (15) O4—C9—C10 125.84 (14)
C2—C3—H3A 120.1 O3—C9—C10 111.98 (13)
C4—C3—H3A 120.1 C9—C10—H10A 109.5
C5—C4—C3 120.37 (16) C9—C10—H10B 109.5
C5—C4—H4A 119.8 H10A—C10—H10B 109.5
C3—C4—H4A 119.8 C9—C10—H10C 109.5
C6—C5—C4 119.83 (15) H10A—C10—H10C 109.5
C6—C5—H5A 120.1 H10B—C10—H10C 109.5
C9—O3—C1—C2 −172.13 (12) C4—C5—C6—C7 1.1 (3)
C9—O3—C1—C8 67.21 (15) C5—C6—C7—C2 −1.0 (3)
O3—C1—C2—C3 98.10 (15) C3—C2—C7—C6 −0.2 (2)
C8—C1—C2—C3 −143.51 (14) C1—C2—C7—C6 176.71 (15)
O3—C1—C2—C7 −78.78 (16) O3—C1—C8—O2 13.69 (19)
C8—C1—C2—C7 39.62 (18) C2—C1—C8—O2 −103.65 (16)
C7—C2—C3—C4 1.1 (2) O3—C1—C8—O1 −167.43 (12)
C1—C2—C3—C4 −175.84 (16) C2—C1—C8—O1 75.23 (15)
C2—C3—C4—C5 −0.9 (3) C1—O3—C9—O4 6.3 (2)
C3—C4—C5—C6 −0.2 (3) C1—O3—C9—C10 −173.19 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O4i 0.85 (2) 1.84 (2) 2.6761 (16) 165 (2)
C10—H10B···O1ii 0.98 2.56 3.312 (2) 133

Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) −x+1/2, −y+1, z+1/2.

References

  1. Bruker (2013). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  4. Lovely, A. E. & Wenzel, T. J. (2008). Chirality, 20, 370–378. [DOI] [PubMed]
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Mughal, R. K., Pritchard, R. G. & Davey, R. J. (2004). Acta Cryst. E60, o232–o233.
  7. Ohtani, M., Matsuura, T., Watanabe, F. & Narisada, M. (1991). J. Org. Chem. 56, 4120–4123.
  8. Ornelas, A., Korczynska, M., Ragumani, S., Kumaran, D., Narindoshvili, T., Shoichet, B. K., Swaminathan, S. & Raushel, F. M. (2013). Biochemistry, 52, 228–238. [DOI] [PMC free article] [PubMed]
  9. Parker, D. (1991). Chem. Rev. 91, 1441–1457.
  10. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  13. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Szeleczky, Z., Bagi, P., Pálovics, E. & Fogassy, E. (2015). Tetrahedron Asymmetry, 26, 377–384.
  16. Xiao, K.-J., Chu, L. & Yu, J.-Q. (2016). Angew. Chem. Int. Ed. 55, 2856–2860. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016008653/pk2580sup1.cif

e-72-00901-sup1.cif (273.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016008653/pk2580Isup2.hkl

e-72-00901-Isup2.hkl (136.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016008653/pk2580Isup3.cml

CCDC reference: 1482445

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES