Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jun 10;72(Pt 7):933–936. doi: 10.1107/S205698901600894X

Crystal structure of 2-(4-acetyl­anilino)-2-oxoethyl 3-(4-hy­droxy­phen­yl)propionate

Zaman Ashraf a,b, Daeyoung Kim c, Sung-Yum Seo a, Sung Kwon Kang c,*
PMCID: PMC4992909  PMID: 27555934

In the crystal of the title compound, a supra­molecular sheet structure is formed through N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds.

Keywords: crystal structure, cinnamate ester, N—H⋯O and O—H⋯O hydrogen bonds, tyrosinase inhibitor

Abstract

In the title compound, C19H19NO5, the amide carbonyl O atom is positioned anti to the other two carbonyl O atoms. The 4-hy­droxy­hydro­cinnamate fragment is disordered over two positions with an occupancy ratio of 0.729 (12):0.271 (12). The N—(C=O)—C plane of the acetamide group and the acetate O—(C=O)—C plane are almost co-planar; the acetamide plane makes dihedral angles of 1.9 (6) and 16.0 (19)°, respectively, with the acetate planes of the major and minor occupancy components. In the crystal, N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a supra­molecular sheet structure parallel to (102).

Chemical context  

Hy­droxy-substituted aromatic compounds with additional ester and amide functionalities have been reported to be potential tyrosinase inhibitors (Miliovsky et al., 2013; Takahashi & Miyazawa, 2011). Tyrosinase is a key enzyme present in melanocytes, which is involved in the biosynthesis of melanin. The abnormal production and accumulation of melanin causes a number of hyperpigmentation disorders such as freckles, melasma, lentigo senilis and pigmented acne scars (Lynde et al., 2006; Cullen, 1998). Tyrosinase has also been linked to melanoma, a skin-cancer type that arises from the aberrant proliferation of melanocytes (Uong & Zon, 2010). It has also been reported that tyrosinase is one of the main causes of most fruit and vegetable damage during post-harvest handling and processing, leading to quicker degradation and shorter shelf life (Yi et al., 2010). Therefore, the synthesis of safe and effective tyrosinase inhibitors is of great concern in the medical, agricultural and cosmetic industries. The synthesis and tyrosinase inhibitory activity of hy­droxy-substituted phenyl esters is currently an ongoing research topic in our lab (Ashraf et al., 2015). In view of the tyrosinase inhibitory potential of hy­droxy-substituted aromatic compounds, the title compound (Fig. 1) has been synthesized and characterized by single crystal X-ray diffraction.graphic file with name e-72-00933-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. Only the major occupancy disorder component is shown.

Structural commentary  

The fragment O1/O12/N10/C2–C9/C11/C13 including the acetamide group is almost planar with an r.m.s. deviation of 0.034 (11) Å. The 4-hy­droxy­hydro­cinnamate fragment is disordered over two positions with occupancy ratio of 0.729 (12):0.271 (12). The acetamide plane O12/N10/C11/C12 makes dihedral angles of 1.9 (6) and 16.0 (19)°, respectively, with the disordered acetate planes O14/O16/C15/C17 and O14A/O16A/C15A/C17A. The carbonyl O1 and O16 atoms are positioned anti with respect to the carbonyl O12 atom. These C=O bond lengths are in the range 1.176 (12)–1.226 (6) Å.

Supra­molecular features  

In the crystal, mol­ecules are linked via N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds (N10—H10⋯O1i, O25—H25⋯O12ii, C4—H4A⋯O16iii and C24—H24⋯O12ii; Table 1), forming a sheet parallel to (102) (Fig. 2). In the sheet, these hydrogen bonds form Inline graphic(6), Inline graphic(19) and Inline graphic(31) graph-set motifs. There are also weak C—H⋯O hydrogen bonds (C13—H13B⋯O25iv and C13—H13B⋯O25A iv; Table 1) between the sheets (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯O1i 0.86 (5) 2.11 (5) 2.925 (5) 159 (4)
O25—H25⋯O12ii 0.95 (12) 1.93 (11) 2.87 (3) 172 (13)
C4—H4A⋯O16iii 0.96 2.59 3.416 (10) 144
C13—H13B⋯O25iv 0.97 2.60 3.458 (17) 147
C13—H13B⋯O25A iv 0.97 2.50 3.34 (4) 145
C24—H24⋯O12ii 0.93 2.57 3.284 (11) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

The sheet structure of mol­ecules linked by N—H⋯O, O—H⋯O, and C—H⋯O hydrogen bonds (dashed lines). Only the major occupancy disorder components are shown.

Figure 3.

Figure 3

Part of the packing diagram of the title compound, showing the C—H⋯O hydrogen bonds (dashed lines) between the hydrogen-bonded sheets. Only the major disorder components are shown.

Database survey  

A search of the Cambridge Structural Database (Version 5.37 with two updates, Groom et al., 2016) returned three entries for crystal structures with ethyl hydro­cinnamate as the main skeleton (BESTIC: Böjthe-Horváth et al., 1982; FUZYOQ: Wang et al., 2015; NAXVIR: Hassan & Wang, 1997). There are 76 entries of organic compounds with the 4-acetyl­anilino group.

Synthesis and crystallization  

The title compound was synthesized by direct condensation of 4-hy­droxy­phenyl propanoic acid with N-(4-acetyl­phen­yl)-2-chloro­acetamide in the presence of dimethyl formamide (DMF) solvent and tri­ethyl­amine base (Fig. 4). The reaction mixture was stirred overnight at room temperature. Then the mixture was poured into finely crushed ice and extracted with ethyl acetate. It was washed with 5% HCl and 5% sodium hydroxide, and finally with aqueous NaCl solution. The organic layer was dried over anhydrous magnesium sulfate, filtered and the solvent was removed under reduced pressure to afford the crude product. The title compound was purified by silica gel column chromatography using ethyl acetate and n-hexane (3:1) as eluent. The single crystals were obtained from a solvent mixture of ethyl acetate/n-hexane (3:1) upon slow evaporation at room temperature (yield 78%, m.p. 419–421 K). FTIR νmax cm−1: 3428 (N—H), 3354 (O—H), 2971 (sp 2 C—H), 2887 (sp 3 C—H), 1735 (C=O ester), 1646 (C=O amide), 1601 (C=C aromatic), 1154 (C—O, ester).

Figure 4.

Figure 4

Reaction scheme for the synthesis of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The 4-hy­droxy­hydro­cinnamate fragment, O16/O25/C15–C24, was found to be disordered over two positions and the occupancy ratio was refined to 0.729 (12):0.271 (12). Atoms O16A, O25A and C15A–C24A of the minor component were refined isotropically. Planarity restraints were applied for atoms C18–C24, O25, C18A–C24A and O25A. Bond-distance restraints were also applied for C20, C22, C23, O16A and C15A–C24A. H10 and H25 of the NH and OH groups, respectively, were located in a difference Fourier map and the coordinates were refined with U iso(H) = 1.2U eq(N) and 1.5U eq(O) [N—H = 0.86 (5) Å and O—H = 0.95 (12) Å]. H25A of the minor occupancy OH group was refined with a restraint of O—H = 0.90 (2) Å, and with U iso(H) = 1.5U eq(O). All other H atoms were included as riding atoms, with C—H = 0.93–0.97 Å and with U iso(H) = 1.5U eq(C) for methyl H atoms or 1.2U eq(C) otherwise.

Table 2. Experimental details.

Crystal data
Chemical formula C19H19NO5
M r 341.35
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 5.510 (3), 14.809 (9), 10.824 (7)
β (°) 100.757 (7)
V3) 867.7 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.26 × 0.25 × 0.23
 
Data collection
Diffractometer Bruker SMART CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 6909, 3403, 1798
R int 0.031
(sin θ/λ)max−1) 0.627
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.126, 1.00
No. of reflections 3403
No. of parameters 276
No. of restraints 25
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.17

Computer programs: SMART and SAINT (Bruker, 2012), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip,2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901600894X/is5453sup1.cif

e-72-00933-sup1.cif (250.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901600894X/is5453Isup2.hkl

e-72-00933-Isup2.hkl (271.6KB, hkl)

Supporting information file. DOI: 10.1107/S205698901600894X/is5453Isup3.cml

CCDC reference: 1483293

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the research fund of Chungnam National University.

supplementary crystallographic information

Crystal data

C19H19NO5 F(000) = 360
Mr = 341.35 Dx = 1.306 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 5.510 (3) Å Cell parameters from 1529 reflections
b = 14.809 (9) Å θ = 2.4–20.5°
c = 10.824 (7) Å µ = 0.10 mm1
β = 100.757 (7)° T = 296 K
V = 867.7 (9) Å3 Block, colourless
Z = 2 0.26 × 0.25 × 0.23 mm

Data collection

Bruker SMART CCD area-detector diffractometer Rint = 0.031
Radiation source: fine-focus sealed tube θmax = 26.5°, θmin = 1.9°
φ and ω scans h = −6→6
6909 measured reflections k = −18→18
3403 independent reflections l = −13→13
1798 reflections with I > 2σ(I)

Refinement

Refinement on F2 25 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.0787P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
3403 reflections Δρmax = 0.14 e Å3
276 parameters Δρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 1.0367 (8) 1.4286 (2) 0.0585 (4) 0.0831 (15)
C2 0.8795 (10) 1.3999 (4) 0.1151 (5) 0.0551 (15)
C3 0.8377 (10) 1.3024 (3) 0.1253 (5) 0.0451 (14)
C4 0.7281 (11) 1.4662 (3) 0.1753 (6) 0.0689 (18)
H4A 0.7711 1.5267 0.1559 0.103*
H4B 0.7615 1.4578 0.2648 0.103*
H4C 0.5557 1.4562 0.1434 0.103*
C5 0.9784 (9) 1.2426 (4) 0.0675 (5) 0.0555 (16)
H5 1.0986 1.2651 0.0258 0.067*
C6 0.9408 (10) 1.1512 (3) 0.0717 (5) 0.0523 (15)
H6 1.0375 1.1123 0.0339 0.063*
C7 0.7613 (9) 1.1162 (3) 0.1315 (5) 0.0459 (14)
C8 0.6218 (11) 1.1739 (3) 0.1902 (5) 0.0572 (17)
H8 0.5016 1.1509 0.2315 0.069*
C9 0.6618 (9) 1.2656 (3) 0.1872 (5) 0.0540 (16)
H9 0.5684 1.3039 0.2278 0.065*
N10 0.7347 (8) 1.0214 (3) 0.1292 (4) 0.0511 (13)
H10 0.836 (9) 0.995 (4) 0.089 (4) 0.061*
C11 0.5765 (10) 0.9683 (4) 0.1782 (5) 0.0500 (15)
O12 0.4168 (7) 0.9955 (2) 0.2321 (4) 0.0621 (11)
C13 0.6264 (11) 0.8699 (3) 0.1599 (5) 0.0509 (15)
H13A 0.6134 0.8570 0.0710 0.061*
H13B 0.7923 0.8548 0.2024 0.061*
O14 0.4514 (7) 0.8175 (2) 0.2098 (4) 0.0650 (12)
C15 0.4672 (17) 0.7263 (6) 0.1902 (11) 0.044 (3) 0.729 (12)
O16 0.631 (3) 0.6938 (5) 0.1497 (16) 0.074 (4) 0.729 (12)
C17 0.2874 (14) 0.6724 (5) 0.2509 (9) 0.048 (2) 0.729 (12)
H17A 0.2446 0.6169 0.2042 0.058* 0.729 (12)
H17B 0.1372 0.7070 0.2487 0.058* 0.729 (12)
C18 0.4021 (15) 0.6501 (7) 0.3868 (8) 0.070 (3) 0.729 (12)
H18A 0.5659 0.6254 0.3893 0.084* 0.729 (12)
H18B 0.4200 0.7054 0.4356 0.084* 0.729 (12)
C19 0.2509 (13) 0.5829 (7) 0.4479 (7) 0.063 (3) 0.729 (12)
C20 0.2881 (15) 0.4932 (7) 0.4377 (8) 0.065 (3) 0.729 (12)
H20 0.4061 0.4732 0.3928 0.078* 0.729 (12)
C21 0.0769 (17) 0.6103 (8) 0.5129 (10) 0.063 (3) 0.729 (12)
H21 0.0479 0.6717 0.5202 0.076* 0.729 (12)
C22 0.154 (2) 0.4300 (8) 0.4927 (10) 0.085 (3) 0.729 (12)
H22 0.1837 0.3686 0.4852 0.102* 0.729 (12)
C23 −0.024 (2) 0.4599 (14) 0.5590 (11) 0.065 (6) 0.729 (12)
C24 −0.059 (2) 0.5493 (11) 0.5684 (12) 0.060 (4) 0.729 (12)
H24 −0.1759 0.5704 0.6130 0.072* 0.729 (12)
O25 −0.156 (4) 0.389 (2) 0.6129 (17) 0.079 (6) 0.729 (12)
H25 −0.24 (2) 0.420 (8) 0.669 (14) 0.119* 0.729 (12)
C15A 0.526 (5) 0.7305 (17) 0.239 (2) 0.033 (7)* 0.271 (12)
O16A 0.647 (11) 0.698 (3) 0.164 (6) 0.13 (2)* 0.271 (12)
C17A 0.344 (5) 0.6930 (19) 0.317 (3) 0.055 (8)* 0.271 (12)
H17C 0.3841 0.7156 0.4029 0.066* 0.271 (12)
H17D 0.1770 0.7116 0.2813 0.066* 0.271 (12)
C18A 0.363 (4) 0.5920 (18) 0.317 (2) 0.075 (8)* 0.271 (12)
H18C 0.5348 0.5749 0.3420 0.090* 0.271 (12)
H18D 0.3055 0.5702 0.2321 0.090* 0.271 (12)
C19A 0.215 (3) 0.5467 (15) 0.4037 (16) 0.044 (7)* 0.271 (12)
C20A 0.256 (4) 0.4531 (14) 0.412 (2) 0.045* 0.271 (12)
H20A 0.3644 0.4259 0.3672 0.054* 0.271 (12)
C21A 0.054 (5) 0.5854 (17) 0.471 (2) 0.050 (9)* 0.271 (12)
H21A 0.0273 0.6474 0.4649 0.060* 0.271 (12)
C22A 0.135 (5) 0.4023 (14) 0.487 (2) 0.042* 0.271 (12)
H22A 0.1609 0.3403 0.4942 0.050* 0.271 (12)
C23A −0.024 (5) 0.444 (3) 0.553 (2) 0.037 (12)* 0.271 (12)
C24A −0.071 (6) 0.535 (2) 0.548 (3) 0.071 (18)* 0.271 (12)
H24A −0.1794 0.5619 0.5932 0.085* 0.271 (12)
O25A −0.135 (10) 0.397 (6) 0.622 (5) 0.061 (13)* 0.271 (12)
H25A −0.18 (5) 0.439 (15) 0.67 (3) 0.091* 0.271 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.110 (3) 0.049 (2) 0.112 (4) −0.013 (2) 0.075 (3) 0.007 (2)
C2 0.060 (4) 0.049 (3) 0.063 (4) 0.004 (3) 0.027 (3) 0.003 (3)
C3 0.057 (4) 0.034 (3) 0.048 (4) 0.000 (2) 0.018 (3) 0.007 (2)
C4 0.080 (4) 0.040 (3) 0.097 (5) −0.001 (3) 0.040 (4) 0.002 (3)
C5 0.054 (4) 0.052 (4) 0.070 (4) 0.000 (3) 0.034 (3) 0.005 (3)
C6 0.063 (4) 0.035 (3) 0.069 (4) 0.009 (3) 0.039 (3) 0.002 (3)
C7 0.052 (3) 0.037 (3) 0.056 (4) 0.001 (3) 0.030 (3) 0.002 (2)
C8 0.070 (4) 0.035 (3) 0.079 (4) −0.003 (3) 0.047 (3) 0.001 (3)
C9 0.059 (4) 0.038 (3) 0.076 (4) 0.004 (3) 0.043 (3) 0.001 (3)
N10 0.069 (3) 0.030 (2) 0.067 (3) 0.003 (2) 0.046 (3) −0.001 (2)
C11 0.052 (3) 0.044 (3) 0.058 (4) −0.003 (3) 0.021 (3) 0.001 (3)
O12 0.073 (3) 0.040 (2) 0.088 (3) 0.0043 (18) 0.054 (2) 0.0006 (19)
C13 0.061 (4) 0.037 (3) 0.063 (4) −0.001 (3) 0.033 (3) 0.000 (2)
O14 0.074 (3) 0.040 (2) 0.098 (3) −0.0014 (18) 0.058 (2) 0.0079 (19)
C15 0.044 (6) 0.046 (6) 0.038 (6) −0.011 (4) −0.004 (5) 0.017 (5)
O16 0.076 (6) 0.022 (3) 0.148 (10) 0.006 (3) 0.081 (6) 0.012 (3)
C17 0.046 (5) 0.045 (5) 0.053 (6) −0.006 (4) 0.008 (4) 0.010 (4)
C18 0.070 (6) 0.076 0.067 (7) −0.017 (5) 0.020 (5) 0.015 (5)
C19 0.054 (6) 0.090 (7) 0.044 (6) −0.025 (5) 0.009 (4) 0.012 (5)
C20 0.063 (5) 0.064 0.083 (7) −0.008 (5) 0.052 (5) −0.002 (6)
C21 0.059 (6) 0.081 (7) 0.050 (7) −0.016 (5) 0.012 (5) 0.014 (6)
C22 0.089 (7) 0.085 0.093 (8) 0.010 (7) 0.048 (6) 0.002 (7)
C23 0.056 (8) 0.088 (12) 0.057 (8) −0.004 (6) 0.031 (5) 0.018 (6)
C24 0.051 (7) 0.071 (8) 0.066 (7) −0.005 (5) 0.033 (5) 0.013 (6)
O25 0.085 (8) 0.064 (9) 0.108 (10) −0.001 (5) 0.068 (6) 0.018 (6)

Geometric parameters (Å, º)

O1—C2 1.226 (6) C18—H18B 0.9700
C2—C3 1.471 (7) C19—C21 1.352 (13)
C2—C4 1.512 (7) C19—C20 1.353 (13)
C3—C9 1.389 (6) C20—C22 1.391 (12)
C3—C5 1.398 (7) C20—H20 0.9300
C4—H4A 0.9600 C21—C24 1.378 (13)
C4—H4B 0.9600 C21—H21 0.9300
C4—H4C 0.9600 C22—C23 1.391 (13)
C5—C6 1.372 (7) C22—H22 0.9300
C5—H5 0.9300 C23—C24 1.35 (2)
C6—C7 1.380 (7) C23—O25 1.46 (3)
C6—H6 0.9300 C24—H24 0.9300
C7—C8 1.381 (7) O25—H25 0.95 (12)
C7—N10 1.411 (6) C15A—O16A 1.24 (3)
C8—C9 1.377 (7) C15A—C17A 1.53 (2)
C8—H8 0.9300 C17A—C18A 1.50 (4)
C9—H9 0.9300 C17A—H17C 0.9700
N10—C11 1.354 (6) C17A—H17D 0.9700
N10—H10 0.86 (5) C18A—C19A 1.51 (3)
C11—O12 1.212 (6) C18A—H18C 0.9700
C11—C13 1.503 (7) C18A—H18D 0.9700
C13—O14 1.421 (5) C19A—C21A 1.37 (2)
C13—H13A 0.9700 C19A—C20A 1.41 (2)
C13—H13B 0.9700 C20A—C22A 1.37 (2)
O14—C15A 1.37 (3) C20A—H20A 0.9300
O14—C15 1.373 (11) C21A—C24A 1.39 (3)
C15—O16 1.176 (12) C21A—H21A 0.9300
C15—C17 1.514 (10) C22A—C23A 1.38 (2)
C17—C18 1.525 (13) C22A—H22A 0.9300
C17—H17A 0.9700 C23A—O25A 1.26 (7)
C17—H17B 0.9700 C23A—C24A 1.37 (3)
C18—C19 1.525 (11) C24A—H24A 0.9300
C18—H18A 0.9700 O25A—H25A 0.90 (3)
O1—C2—C3 120.8 (5) H18A—C18—H18B 107.7
O1—C2—C4 119.3 (5) C21—C19—C20 118.0 (8)
C3—C2—C4 119.9 (5) C21—C19—C18 121.9 (9)
C9—C3—C5 117.6 (4) C20—C19—C18 120.1 (9)
C9—C3—C2 123.7 (4) C19—C20—C22 121.7 (8)
C5—C3—C2 118.7 (5) C19—C20—H20 119.2
C2—C4—H4A 109.5 C22—C20—H20 119.2
C2—C4—H4B 109.5 C19—C21—C24 121.7 (12)
H4A—C4—H4B 109.5 C19—C21—H21 119.2
C2—C4—H4C 109.5 C24—C21—H21 119.2
H4A—C4—H4C 109.5 C20—C22—C23 119.2 (11)
H4B—C4—H4C 109.5 C20—C22—H22 120.4
C6—C5—C3 120.6 (5) C23—C22—H22 120.4
C6—C5—H5 119.7 C24—C23—C22 118.5 (12)
C3—C5—H5 119.7 C24—C23—O25 126.0 (17)
C5—C6—C7 120.8 (5) C22—C23—O25 115.6 (19)
C5—C6—H6 119.6 C23—C24—C21 121.0 (12)
C7—C6—H6 119.6 C23—C24—H24 119.5
C6—C7—C8 119.5 (4) C21—C24—H24 119.5
C6—C7—N10 116.5 (4) C23—O25—H25 105 (8)
C8—C7—N10 124.0 (4) O16A—C15A—O14 113 (3)
C9—C8—C7 119.6 (5) O16A—C15A—C17A 135 (3)
C9—C8—H8 120.2 O14—C15A—C17A 105.6 (19)
C7—C8—H8 120.2 C18A—C17A—C15A 108 (2)
C8—C9—C3 121.8 (5) C18A—C17A—H17C 110.1
C8—C9—H9 119.1 C15A—C17A—H17C 110.1
C3—C9—H9 119.1 C18A—C17A—H17D 110.1
C11—N10—C7 130.0 (4) C15A—C17A—H17D 110.1
C11—N10—H10 118 (4) H17C—C17A—H17D 108.4
C7—N10—H10 112 (4) C17A—C18A—C19A 113 (2)
O12—C11—N10 125.0 (5) C17A—C18A—H18C 108.9
O12—C11—C13 123.6 (5) C19A—C18A—H18C 108.9
N10—C11—C13 111.4 (4) C17A—C18A—H18D 108.9
O14—C13—C11 109.0 (4) C19A—C18A—H18D 108.9
O14—C13—H13A 109.9 H18C—C18A—H18D 107.7
C11—C13—H13A 109.9 C21A—C19A—C20A 119 (2)
O14—C13—H13B 109.9 C21A—C19A—C18A 128 (2)
C11—C13—H13B 109.9 C20A—C19A—C18A 112.3 (19)
H13A—C13—H13B 108.3 C22A—C20A—C19A 119 (2)
C15A—O14—C13 113.9 (10) C22A—C20A—H20A 120.3
C15—O14—C13 114.3 (5) C19A—C20A—H20A 120.3
O16—C15—O14 122.3 (8) C19A—C21A—C24A 122 (2)
O16—C15—C17 123.7 (9) C19A—C21A—H21A 118.8
O14—C15—C17 112.7 (8) C24A—C21A—H21A 118.8
C15—C17—C18 110.2 (7) C20A—C22A—C23A 119 (2)
C15—C17—H17A 109.6 C20A—C22A—H22A 120.5
C18—C17—H17A 109.6 C23A—C22A—H22A 120.5
C15—C17—H17B 109.6 O25A—C23A—C24A 117 (5)
C18—C17—H17B 109.6 O25A—C23A—C22A 119 (5)
H17A—C17—H17B 108.1 C24A—C23A—C22A 124 (3)
C19—C18—C17 113.5 (5) C23A—C24A—C21A 116 (3)
C19—C18—H18A 108.9 C23A—C24A—H24A 122.0
C17—C18—H18A 108.9 C21A—C24A—H24A 122.0
C19—C18—H18B 108.9 C23A—O25A—H25A 103 (10)
C17—C18—H18B 108.9
O1—C2—C3—C9 −179.6 (5) C17—C18—C19—C20 88.3 (8)
C4—C2—C3—C9 0.7 (8) C21—C19—C20—C22 −0.5 (5)
O1—C2—C3—C5 −0.9 (9) C18—C19—C20—C22 179.7 (3)
C4—C2—C3—C5 179.3 (5) C20—C19—C21—C24 0.5 (8)
C9—C3—C5—C6 0.5 (8) C18—C19—C21—C24 −179.7 (5)
C2—C3—C5—C6 −178.2 (5) C19—C20—C22—C23 0.6 (7)
C3—C5—C6—C7 0.9 (8) C20—C22—C23—C24 −0.6 (9)
C5—C6—C7—C8 −1.5 (9) C20—C22—C23—O25 179.7 (5)
C5—C6—C7—N10 179.1 (5) C22—C23—C24—C21 0.6 (10)
C6—C7—C8—C9 0.7 (9) O25—C23—C24—C21 −179.7 (6)
N10—C7—C8—C9 180.0 (5) C19—C21—C24—C23 −0.6 (10)
C7—C8—C9—C3 0.8 (9) C15—O14—C15A—O16A 60 (4)
C5—C3—C9—C8 −1.3 (8) C13—O14—C15A—O16A −36 (4)
C2—C3—C9—C8 177.3 (6) C15—O14—C15A—C17A −96 (3)
C6—C7—N10—C11 −179.6 (5) C13—O14—C15A—C17A 167.6 (15)
C8—C7—N10—C11 1.0 (10) O16A—C15A—C17A—C18A 14 (7)
C7—N10—C11—O12 2.6 (10) O14—C15A—C17A—C18A 162 (2)
C7—N10—C11—C13 −176.3 (5) C15A—C17A—C18A—C19A 173.0 (16)
O12—C11—C13—O14 2.7 (7) C17A—C18A—C19A—C21A 6 (2)
N10—C11—C13—O14 −178.4 (5) C17A—C18A—C19A—C20A −174 (2)
C11—C13—O14—C15A −158.1 (12) C21A—C19A—C20A—C22A −0.1 (5)
C11—C13—O14—C15 175.5 (7) C18A—C19A—C20A—C22A 179.9 (4)
C15A—O14—C15—O16 −85 (3) C20A—C19A—C21A—C24A 0.0 (8)
C13—O14—C15—O16 9.0 (15) C18A—C19A—C21A—C24A −180.0 (5)
C15A—O14—C15—C17 82 (3) C19A—C20A—C22A—C23A 0.1 (8)
C13—O14—C15—C17 176.8 (6) C20A—C22A—C23A—O25A 179.9 (6)
O16—C15—C17—C18 80.5 (15) C20A—C22A—C23A—C24A −0.1 (11)
O14—C15—C17—C18 −87.2 (10) O25A—C23A—C24A—C21A −179.9 (7)
C15—C17—C18—C19 −170.4 (8) C22A—C23A—C24A—C21A 0.1 (11)
C17—C18—C19—C21 −91.5 (8) C19A—C21A—C24A—C23A −0.1 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N10—H10···O1i 0.86 (5) 2.11 (5) 2.925 (5) 159 (4)
O25—H25···O12ii 0.95 (12) 1.93 (11) 2.87 (3) 172 (13)
C4—H4A···O16iii 0.96 2.59 3.416 (10) 144
C13—H13B···O25iv 0.97 2.60 3.458 (17) 147
C13—H13B···O25Aiv 0.97 2.50 3.34 (4) 145
C24—H24···O12ii 0.93 2.57 3.284 (11) 133

Symmetry codes: (i) −x+2, y−1/2, −z; (ii) −x, y−1/2, −z+1; (iii) x, y+1, z; (iv) −x+1, y+1/2, −z+1.

References

  1. Ashraf, Z., Rafiq, M., Seo, S. Y., Kwon, K. S., Babar, M. M. & Zaidi, N. S. (2015). Eur. J. Med. Chem. 98, 203–211. [DOI] [PubMed]
  2. Böjthe-Horváth, K., Kocsis, Á., Párkány, L. & Simon, K. (1982). Tetrahedron Lett. 23, 965–966.
  3. Bruker (2012). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cullen, M. K. (1998). The Pigmentary System: Physiology and Pathophysiology, edited by J. J. Norlund, R. E. Boissy, V. J. Hearing, R. A. King & J. P. Ortonne, pp. 760–766. New York: Oxford University Press Inc.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hassan, A. & Wang, S. (1997). J. Chem. Soc. Dalton Trans. pp. 2009–2018.
  8. Lynde, C. B., Kraft, J. N. & Lynde, C. W. (2006). Skin Therapy Lett. 11, 1–6. [PubMed]
  9. Miliovsky, M., Svinyarov, I., Mitrev, Y., Evstatieva, Y., Nikolova, D., Chochkova, M. & Bogdanov, M. G. (2013). Eur. J. Med. Chem. 66, 185–192. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Takahashi, T. & Miyazawa, M. (2011). Bioorg. Med. Chem. Lett. 21, 1983–1986. [DOI] [PubMed]
  13. Uong, A. & Zon, L. I. (2010). J. Cell. Physiol. 222, 38–41. [DOI] [PMC free article] [PubMed]
  14. Wang, J., Lu, L., Ma, A. Q., Wu, W. P., Xie, B. & Wu, Y. (2015). Russ. J. Coord. Chem. 41, 618–623.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Yi, W., Cao, R., Peng, W., Wen, H., Yan, Q., Zhou, B., Ma, L. & Song, H. (2010). Eur. J. Med. Chem. 45, 639–646. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901600894X/is5453sup1.cif

e-72-00933-sup1.cif (250.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901600894X/is5453Isup2.hkl

e-72-00933-Isup2.hkl (271.6KB, hkl)

Supporting information file. DOI: 10.1107/S205698901600894X/is5453Isup3.cml

CCDC reference: 1483293

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES