Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jun 14;72(Pt 7):943–946. doi: 10.1107/S2056989016009014

Disodium hydrogen citrate sesquihydrate, Na2HC6H5O7(H2O)1.5

Alagappa Rammohan a, Amy A Sarjeant b, James A Kaduk c,*
PMCID: PMC4992911  PMID: 27555936

The crystal structure of disodium hydrogen citrate sesquihydrate has been solved and refined using laboratory X-ray single-crystal diffraction data, and optimized using density functional techniques.

Keywords: crystal structure, density functional theory, citrate, sodium

Abstract

The crystal structure of disodium hydrogen citrate sesquihydrate, 2Na2 +·C6H6O7 2−·1.5H2O, has been solved and refined using laboratory X-ray single-crystal diffraction data, and optimized using density functional techniques. The asymmetric unit contains two independent hydrogen citrate anions, four sodium cations and three water molecules. The coordination polyhedra of the cations (three with a coordination number of six, one with seven) share edges to form isolated 8-rings. The un-ionized terminal carb­oxy­lic acid groups form very strong hydrogen bonds to non-coordinating O atoms, with O⋯O distances of 2.46 Å.

Chemical context  

In the course of a systematic study of the crystal structures of Group 1 (alkali metal) citrate salts to understand the anion’s conformational flexibility, ionization, coordination tendencies, and hydrogen bonding, we have determined several new crystal structures. Most of the new structures were solved using powder diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the 16 new compounds and 12 previously characterized structures are being reported separately (Rammohan & Kaduk, 2016a ). Four of the new structures – NaKHC6H5O7, NaK2C6H5O7, Na3C6H5O7, and a second polymorph of NaH2C6H5O7 – have been published recently (Rammohan & Kaduk, 2016b ,c ,d ,e ) and two additional structures – KH2C6H5O7 and KH2C6H5O7(H2O)2 – have been communicated to the CSD (Kaduk & Stern, 2016a ,b ).graphic file with name e-72-00943-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound is shown in Fig. 1. The root-mean-square deviation of the non-hydrogen atoms in the refined and DFT-optimized structures is only 0.048 Å. The excellent agreement between the two structures (Fig. 2) is strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014). This discussion uses the DFT-optimized structure. Almost all of the bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2008). Only the C3—O13 bond length [observed = 1.416 (2), optimized = 1.410, Mogul average = 1.445 (11) Å, Z-score = 3.3] and the C2—C3—C4—C5 torsion angle [observed = −55.7 (1), optimized = −50.6°] are flagged as unusual. The standard deviation on the Mogul average for the C3—O13 distance is exceptionally low, resulting in the elevated Z-score. The C2—C3—C4—C5 torsion angle lies in the tail of a minority gauche conformation. None of the experimental qu­anti­ties are flagged as unusual.

Figure 1.

Figure 1

The asymmetric unit of the DFT-optimized structure, with the atom numbering. The atoms are represented by 50% probability spheroids.

Figure 2.

Figure 2

Comparison of the refined and optimized structures of disodium hydrogen citrate sesquihydrate. The refined structure is in red, and the DFT-optimized structure is in blue.

The two independent citrate ions in the optimized structure are very similar; the root-mean-square displacement of the non-hydrogen atoms is 0.10 Å. Both anions occur in a gauche,trans conformation, which is one of the two low-energy conformations of an isolated citrate. The central carboxyl­ate and hydroxyl groups are in the normal planar arrangement. The central and one terminal carboxyl­ate groups in each hydrogen citrate anion are deprotonated. Both citrates chelate to Na2 atom through the end carboxyl­ate atom O8, the central carboxyl­ate atom O10, and the hydroxyl group O13.

The four independent Na1, Na2, Na3, and Na4 cations are 6-, 7-, 6-, and 6-coordinate. The 6-coordinate Na+ cations are in an approximately octa­hedral environment. The bond-valence sums are 1.12, 1.26, 1.16, and 1.20, respectively. Only the oxygen atoms O12 and O12A do not coordinate to an Na atom; these are part of central carboxyl­ate groups, and the Na—O distances are very long at 2.76 Å. There are one, one, one, and three water mol­ecules in the coordination spheres of atoms Na1, Na2, Na3, and Na4.

Supra­molecular features  

The [NaOx coordination polyhedra (x = 6, 7) share edges to form 8-ring units (Fig. 3), which are isolated from each other in the crystal structure (Fig. 4).

Figure 3.

Figure 3

The 8-rings formed by edge sharing of the Na coordination polyhedra.

Figure 4.

Figure 4

The crystal structure of Na2HC6H5O7(H2O)1.5, viewed down the a axis.

The OH functions of the carboxy groups, O7—H19 and O17A—H19A, form very strong hydrogen bonds to the non-coordinating atoms O12A and O12, respectively (Table 1). The experimental donor–hydrogen distances are significantly longer than the DFT-optimized ones. The refined O7—H19 and O7A—H19A distances are both 1.20 (3) Å, and the optimized distances are both 1.079 Å. The other hydrogen bonds participate in a variety of rings.

Table 1. Hydrogen-bond geometry (Å, °) .

D—H⋯A D—H H⋯A DA D—H⋯A
O7A—H19A⋯O12 1.079 1.393 2.465 171.1
O7—H19⋯O12A 1.079 1.382 2.456 172.5
O13A—H16A⋯O11A 0.986 1.725 2.698 168.3
O13—H16⋯O11 0.987 1.760 2.743 173.4
O1W—H1W⋯O10 0.988 1.806 2.772 165.0
O3W—H5W⋯O12A 0.981 1.751 2.714 165.9
O3W—H6W⋯O9A 0.979 1.945 2.881 159.0
O1W—H2W⋯O10A 0.980 2.122 3.067 161.4
O2W—H4W⋯O12 0.971 2.171 2.877 128.5
O2W—H3W⋯O8 0.972 2.146 2.946 138.6
O2W—H3W⋯O1W 0.972 2.503 3.166 125.3

Database survey  

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2016a ). The observed powder pattern matched that of Na2HC6H5O7(H2O)2 in PDF entry 00-016-1182 (de Wolff et al., 1966) A reduced-cell search in the Cambridge Structural Database (Groom et al., 2016) yielded 104 hits, but limiting the chemistry to C, H, Na, and O only resulted in no hits.

Synthesis and crystallization  

The sample was purchased from Sigma–Aldrich (lot #BCBC6031V). Single crystals were isolated from the as-received material.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen-atom parameters were refined.

Table 2. Experimental details.

Crystal data
Chemical formula 2Na2 +·C6H6O7 2−·1.5H2O
M r 263.11
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 8.6713 (3), 10.6475 (4), 10.9961 (4)
α, β, γ (°) 68.461 (1), 79.617 (2), 81.799 (2)
V3) 925.63 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.34
Crystal size (mm) 0.24 × 0.14 × 0.06
 
Data collection
Diffractometer Bruker Kappa APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2006)
T min, T max 0.652, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 9177, 3235, 3137
R int 0.021
(sin θ/λ)max−1) 0.599
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.026, 0.070, 1.10
No. of reflections 3235
No. of parameters 370
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.36, −0.31

The same symmetry and lattice parameters were used for the DFT calculation. Computer programs: APEX2 and SAINT (Bruker, 2006), XM and XL (Bruker, 2004), OLEX2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2006) and Materials Studio (Dassault Systemes, 2014).

DFT Calculations  

A density functional geometry optimization (fixed experimental unit cell) was carried out using CRYSTAL09 (Dovesi et al., 2005). The basis sets for the C, H, and O atoms were those of Gatti et al. (1994), and the basis set for Na was that of Dovesi et al. (1991). The calculation used 8 k-points and the B3LYP functional, and took about 10 days on a 2.4 GHz PC. U iso values were assigned to the optimized fractional coordinates based on the U eq values from the refined structure.

Supplementary Material

Crystal structure: contains datablock(s) na2c, na2c_DFT. DOI: 10.1107/S2056989016009014/vn2112sup1.cif

e-72-00943-sup1.cif (127.7KB, cif)

Structure factors: contains datablock(s) na2c. DOI: 10.1107/S2056989016009014/vn2112na2csup2.hkl

e-72-00943-na2csup2.hkl (158.7KB, hkl)

Structure factors: contains datablock(s) na2c_DFT. DOI: 10.1107/S2056989016009014/vn2112na2c_DFTsup3.hkl

CCDC references: 1483449, 1483448

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

(na2c) Disodium hydrogen citrate sesquihydrate. Crystal data

2Na+·C6H6O72·1.5H2O Z = 4
Mr = 263.11 F(000) = 540
Triclinic, P1 Dx = 1.888 Mg m3
a = 8.6713 (3) Å Cu Kα radiation, λ = 1.54184 Å
b = 10.6475 (4) Å Cell parameters from 7113 reflections
c = 10.9961 (4) Å θ = 4.4–67.1°
α = 68.461 (1)° µ = 2.34 mm1
β = 79.617 (2)° T = 100 K
γ = 81.799 (2)° Rod, colourless
V = 925.63 (6) Å3 0.24 × 0.14 × 0.06 mm

(na2c) Disodium hydrogen citrate sesquihydrate. Data collection

Bruker Kappa APEX CCD area detector diffractometer 3235 independent reflections
Radiation source: microsource 3137 reflections with I > 2σ(I)
MX optics monochromator Rint = 0.021
Detector resolution: 8 pixels mm-1 θmax = 67.6°, θmin = 4.4°
ω and φ scans h = −7→10
Absorption correction: multi-scan (SADABS; Bruker, 2006) k = −12→12
Tmin = 0.652, Tmax = 0.753 l = −13→12
9177 measured reflections

(na2c) Disodium hydrogen citrate sesquihydrate. Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070 All H-atom parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.4756P] where P = (Fo2 + 2Fc2)/3
3235 reflections (Δ/σ)max = 0.002
370 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.31 e Å3

(na2c) Disodium hydrogen citrate sesquihydrate. Special details

Experimental. SADABS (Bruker,2006) was used for absorption correction. R(int) was 0.0787 before and 0.0318 after correction. The Ratio of minimum to maximum transmission is 0.8655. The λ/2 correction factor is 0.0015.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(na2c) Disodium hydrogen citrate sesquihydrate. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Na1 −0.36905 (6) 0.67174 (5) 1.09406 (5) 0.01145 (13)
Na2 −0.26692 (6) 0.20337 (5) 0.79550 (5) 0.01118 (14)
Na3 0.08801 (6) 1.08405 (5) 0.67885 (5) 0.01112 (13)
Na4 0.34928 (6) 0.86038 (5) 0.85665 (5) 0.01460 (14)
O1W 0.26747 (14) 0.99605 (11) 0.99770 (10) 0.0155 (2)
H1W 0.333 (3) 1.053 (3) 0.943 (3) 0.047 (7)*
H2W 0.181 (3) 1.034 (2) 0.983 (2) 0.037 (6)*
O2W 0.62348 (12) 0.82465 (11) 0.87230 (11) 0.0161 (2)
H3W 0.679 (3) 0.886 (3) 0.849 (3) 0.047 (7)*
H4W 0.647 (4) 0.789 (3) 0.814 (3) 0.067 (9)*
O3W 0.09169 (12) 0.84523 (10) 0.82906 (11) 0.0134 (2)
H5W 0.065 (3) 0.813 (2) 0.779 (2) 0.036 (6)*
H6W 0.029 (3) 0.813 (2) 0.901 (2) 0.029 (5)*
O7 −0.16831 (11) 0.95459 (10) 0.52380 (9) 0.0127 (2)
O8 −0.20033 (11) 1.04882 (10) 0.67830 (9) 0.0123 (2)
O9 −0.63550 (11) 1.06594 (9) 0.68976 (9) 0.0109 (2)
O10 −0.53711 (11) 1.17365 (9) 0.79545 (9) 0.0107 (2)
O11 −0.46736 (11) 1.50841 (9) 0.30164 (9) 0.0108 (2)
O12 −0.49461 (11) 1.33279 (9) 0.24551 (9) 0.0114 (2)
O13 −0.36210 (11) 1.32227 (10) 0.57450 (9) 0.0098 (2)
H16 −0.419 (2) 1.378 (2) 0.603 (2) 0.023 (5)*
C1 −0.23366 (15) 1.04395 (13) 0.57558 (13) 0.0091 (3)
C2 −0.35405 (16) 1.14161 (13) 0.49599 (13) 0.0092 (3)
H14 −0.413 (2) 1.0882 (17) 0.4733 (16) 0.009 (4)*
H15 −0.291 (2) 1.1960 (18) 0.4148 (18) 0.015 (4)*
C3 −0.46014 (15) 1.23514 (13) 0.55909 (13) 0.0087 (3)
C4 −0.58579 (15) 1.31651 (13) 0.46879 (13) 0.0094 (3)
H17 −0.648 (2) 1.3845 (17) 0.5050 (17) 0.011 (4)*
H18 −0.6557 (19) 1.2561 (16) 0.4648 (15) 0.006 (4)*
C5 −0.51150 (15) 1.39448 (13) 0.33037 (13) 0.0090 (3)
C6 −0.55179 (15) 1.15103 (13) 0.69346 (13) 0.0087 (3)
O7A −0.33313 (12) 0.47238 (10) 1.04866 (9) 0.0137 (2)
O8A −0.32692 (11) 0.32406 (9) 0.94823 (9) 0.0112 (2)
O9A 0.10082 (11) 0.29981 (10) 0.93250 (9) 0.0125 (2)
O10A 0.00229 (11) 0.19514 (9) 0.82508 (10) 0.0118 (2)
O11A −0.01900 (11) 0.69477 (9) 0.48444 (9) 0.0112 (2)
O12A −0.01213 (11) 0.75754 (9) 0.65463 (9) 0.0114 (2)
O13A −0.15562 (11) 0.42424 (9) 0.68263 (9) 0.0099 (2)
H16A −0.101 (3) 0.395 (2) 0.626 (2) 0.029 (5)*
C1A −0.27937 (15) 0.42486 (13) 0.95554 (13) 0.0095 (3)
C2A −0.15323 (16) 0.50579 (13) 0.85584 (13) 0.0099 (3)
H14A −0.088 (2) 0.5291 (17) 0.9052 (17) 0.011 (4)*
H15A −0.209 (2) 0.5897 (19) 0.8023 (18) 0.019 (4)*
C3A −0.05408 (15) 0.43861 (13) 0.76326 (13) 0.0087 (3)
C4A 0.07926 (16) 0.52892 (13) 0.67715 (13) 0.0097 (3)
H17A 0.138 (2) 0.4872 (18) 0.6159 (18) 0.014 (4)*
H18A 0.148 (2) 0.5361 (16) 0.7318 (17) 0.010 (4)*
C5A 0.01286 (15) 0.66847 (13) 0.59661 (13) 0.0088 (3)
C6A 0.02354 (15) 0.29878 (13) 0.84637 (13) 0.0091 (3)
H19A −0.415 (4) 0.402 (3) 1.143 (3) 0.078 (10)*
H19 −0.090 (4) 0.861 (3) 0.591 (3) 0.069 (9)*

(na2c) Disodium hydrogen citrate sesquihydrate. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Na1 0.0130 (3) 0.0106 (3) 0.0106 (3) −0.0013 (2) −0.0011 (2) −0.0038 (2)
Na2 0.0106 (3) 0.0124 (3) 0.0117 (3) −0.0022 (2) −0.0012 (2) −0.0053 (2)
Na3 0.0120 (3) 0.0112 (3) 0.0102 (3) −0.0002 (2) −0.0019 (2) −0.0040 (2)
Na4 0.0160 (3) 0.0117 (3) 0.0137 (3) −0.0042 (2) −0.0051 (2) 0.0009 (2)
O1W 0.0162 (5) 0.0143 (5) 0.0132 (5) −0.0023 (4) −0.0003 (4) −0.0020 (4)
O2W 0.0163 (5) 0.0145 (5) 0.0150 (5) −0.0029 (4) −0.0018 (4) −0.0021 (4)
O3W 0.0150 (5) 0.0154 (5) 0.0105 (5) −0.0042 (4) −0.0025 (4) −0.0040 (4)
O7 0.0153 (5) 0.0116 (5) 0.0123 (5) 0.0038 (4) −0.0041 (4) −0.0064 (4)
O8 0.0144 (5) 0.0127 (5) 0.0108 (5) 0.0010 (4) −0.0039 (4) −0.0052 (4)
O9 0.0118 (5) 0.0101 (5) 0.0105 (5) −0.0037 (4) −0.0024 (4) −0.0018 (4)
O10 0.0120 (5) 0.0118 (5) 0.0088 (5) −0.0023 (4) −0.0003 (4) −0.0043 (4)
O11 0.0120 (5) 0.0091 (5) 0.0105 (5) −0.0018 (4) −0.0007 (4) −0.0025 (4)
O12 0.0146 (5) 0.0112 (5) 0.0088 (5) −0.0031 (4) −0.0003 (4) −0.0035 (4)
O13 0.0094 (5) 0.0096 (5) 0.0117 (5) −0.0024 (4) −0.0008 (4) −0.0050 (4)
C1 0.0082 (6) 0.0084 (6) 0.0094 (6) −0.0032 (5) 0.0011 (5) −0.0018 (5)
C2 0.0100 (6) 0.0096 (6) 0.0085 (6) −0.0012 (5) −0.0018 (5) −0.0033 (5)
C3 0.0083 (6) 0.0081 (6) 0.0099 (6) −0.0011 (5) −0.0017 (5) −0.0031 (5)
C4 0.0088 (6) 0.0092 (6) 0.0089 (6) −0.0011 (5) −0.0006 (5) −0.0020 (5)
C5 0.0059 (6) 0.0105 (6) 0.0095 (6) 0.0019 (5) −0.0025 (5) −0.0025 (5)
C6 0.0064 (6) 0.0077 (6) 0.0103 (7) 0.0026 (5) −0.0020 (5) −0.0021 (5)
O7A 0.0178 (5) 0.0129 (5) 0.0108 (5) −0.0048 (4) 0.0044 (4) −0.0063 (4)
O8A 0.0139 (5) 0.0090 (5) 0.0102 (5) −0.0024 (4) −0.0004 (4) −0.0029 (4)
O9A 0.0122 (5) 0.0140 (5) 0.0111 (5) −0.0017 (4) −0.0043 (4) −0.0027 (4)
O10A 0.0128 (5) 0.0098 (5) 0.0136 (5) −0.0006 (4) −0.0014 (4) −0.0051 (4)
O11A 0.0126 (5) 0.0116 (5) 0.0085 (5) −0.0005 (4) −0.0013 (4) −0.0026 (4)
O12A 0.0148 (5) 0.0090 (5) 0.0111 (5) −0.0003 (4) −0.0034 (4) −0.0037 (4)
O13A 0.0096 (5) 0.0124 (5) 0.0090 (5) −0.0007 (4) −0.0022 (4) −0.0049 (4)
C1A 0.0101 (6) 0.0088 (6) 0.0083 (6) 0.0018 (5) −0.0032 (5) −0.0017 (5)
C2A 0.0105 (6) 0.0097 (6) 0.0094 (6) −0.0016 (5) −0.0003 (5) −0.0035 (5)
C3A 0.0085 (6) 0.0090 (6) 0.0088 (6) −0.0012 (5) −0.0022 (5) −0.0029 (5)
C4A 0.0089 (6) 0.0096 (6) 0.0098 (6) −0.0004 (5) −0.0010 (5) −0.0027 (5)
C5A 0.0053 (6) 0.0101 (6) 0.0102 (6) −0.0033 (5) 0.0019 (5) −0.0029 (5)
C6A 0.0063 (6) 0.0111 (6) 0.0077 (6) −0.0012 (5) 0.0024 (5) −0.0021 (5)

(na2c) Disodium hydrogen citrate sesquihydrate. Geometric parameters (Å, º)

Na1—O2Wi 2.3901 (11) O10—Na2ix 2.4085 (10)
Na1—O10ii 2.3618 (11) O10—C6 1.2612 (17)
Na1—O11iii 2.4017 (10) O11—Na1x 2.4017 (10)
Na1—O7A 2.3207 (11) O11—C5 1.2351 (17)
Na1—O8Aiv 2.7499 (11) O12—Na4vii 2.7435 (11)
Na1—O9Av 2.3405 (11) O12—C5 1.3027 (17)
Na2—O1Wv 2.4765 (11) O13—Na2ix 2.5209 (11)
Na2—O8vi 2.3917 (11) O13—H16 0.83 (2)
Na2—O10vi 2.4085 (10) O13—C3 1.4158 (16)
Na2—O13vi 2.5209 (11) C1—C2 1.5127 (18)
Na2—O8A 2.4128 (11) C2—H14 0.940 (18)
Na2—O10A 2.3995 (11) C2—H15 0.982 (19)
Na2—O13A 2.4647 (11) C2—C3 1.5282 (18)
Na3—O3W 2.4713 (11) C3—C4 1.5533 (18)
Na3—O7vii 2.3774 (11) C3—C6 1.5572 (18)
Na3—O8 2.5820 (11) C4—H17 0.997 (18)
Na3—O9viii 2.3989 (10) C4—H18 0.962 (17)
Na3—O10Aix 2.2918 (11) C4—C5 1.5139 (18)
Na3—O11Avii 2.4512 (10) O7A—C1A 1.2896 (17)
Na4—O1W 2.4397 (12) O7A—H19A 1.20 (3)
Na4—O2W 2.3810 (12) O8A—Na1iv 2.7499 (11)
Na4—O3W 2.3430 (11) O8A—Na4v 2.3157 (10)
Na4—O9viii 2.2851 (10) O8A—C1A 1.2368 (17)
Na4—O12vii 2.7435 (11) O9A—Na1v 2.3405 (11)
Na4—O8Av 2.3157 (10) O9A—C6A 1.2588 (17)
O1W—Na2v 2.4765 (11) O10A—Na3vi 2.2918 (11)
O1W—H1W 0.87 (3) O10A—C6A 1.2528 (17)
O1W—H2W 0.81 (3) O11A—Na3vii 2.4512 (10)
O2W—Na1viii 2.3902 (11) O11A—C5A 1.2342 (17)
O2W—H3W 0.80 (3) O12A—C5A 1.2997 (17)
O2W—H4W 0.84 (3) O12A—H19 1.25 (3)
O3W—H5W 0.82 (3) O13A—H16A 0.84 (2)
O3W—H6W 0.86 (2) O13A—C3A 1.4157 (16)
O7—Na3vii 2.3773 (11) C1A—C2A 1.5112 (18)
O7—C1 1.2955 (17) C2A—H14A 0.960 (18)
O7—H19 1.20 (3) C2A—H15A 0.99 (2)
O8—Na2ix 2.3917 (11) C2A—C3A 1.5268 (18)
O8—C1 1.2357 (17) C3A—C4A 1.5530 (18)
O9—Na3i 2.3988 (10) C3A—C6A 1.5626 (18)
O9—Na4i 2.2851 (10) C4A—H17A 0.971 (19)
O9—C6 1.2549 (17) C4A—H18A 0.946 (18)
O10—Na1ii 2.3618 (11) C4A—C5A 1.5156 (18)
O2Wi—Na1—O11iii 156.26 (4) C5—O11—Na1x 131.75 (9)
O2Wi—Na1—O8Aiv 75.81 (4) C5—O12—Na4vii 152.04 (8)
O10ii—Na1—O2Wi 98.54 (4) Na2ix—O13—H16 90.8 (14)
O10ii—Na1—O11iii 83.03 (4) C3—O13—Na2ix 106.96 (7)
O10ii—Na1—O8Aiv 87.71 (3) C3—O13—H16 108.1 (14)
O11iii—Na1—O8Aiv 80.60 (3) O7—C1—C2 112.53 (11)
O7A—Na1—O2Wi 97.21 (4) O8—C1—O7 123.49 (12)
O7A—Na1—O10ii 159.74 (4) O8—C1—C2 123.98 (12)
O7A—Na1—O11iii 77.44 (4) C1—C2—H14 105.8 (10)
O7A—Na1—O8Aiv 83.87 (4) C1—C2—H15 104.2 (11)
O7A—Na1—O9Av 95.46 (4) C1—C2—C3 117.38 (11)
O9Av—Na1—O2Wi 88.70 (4) H14—C2—H15 107.8 (14)
O9Av—Na1—O10ii 97.56 (4) C3—C2—H14 111.4 (10)
O9Av—Na1—O11iii 114.69 (4) C3—C2—H15 109.7 (10)
O9Av—Na1—O8Aiv 164.25 (4) O13—C3—C2 107.07 (10)
O8vi—Na2—O1Wv 87.53 (4) O13—C3—C4 111.32 (10)
O8vi—Na2—O10vi 86.15 (4) O13—C3—C6 111.84 (11)
O8vi—Na2—O13vi 73.84 (4) C2—C3—C4 109.53 (11)
O8vi—Na2—O8A 169.75 (4) C2—C3—C6 110.59 (10)
O8vi—Na2—O10A 91.46 (4) C4—C3—C6 106.52 (10)
O8vi—Na2—O13A 114.69 (4) C3—C4—H17 109.6 (10)
O10vi—Na2—O1Wv 88.39 (4) C3—C4—H18 109.9 (9)
O10vi—Na2—O13vi 66.13 (3) H17—C4—H18 109.3 (14)
O10vi—Na2—O8A 94.93 (4) C5—C4—C3 111.88 (11)
O10vi—Na2—O13A 122.23 (4) C5—C4—H17 106.8 (10)
O8A—Na2—O1Wv 82.32 (4) C5—C4—H18 109.3 (9)
O8A—Na2—O13vi 115.91 (4) O11—C5—O12 122.67 (12)
O8A—Na2—O13A 73.28 (3) O11—C5—C4 121.45 (12)
O10A—Na2—O1Wv 81.90 (4) O12—C5—C4 115.87 (11)
O10A—Na2—O10vi 170.09 (4) O9—C6—O10 125.63 (12)
O10A—Na2—O13vi 122.36 (4) O9—C6—C3 116.04 (11)
O10A—Na2—O8A 85.75 (4) O10—C6—C3 118.32 (11)
O10A—Na2—O13A 67.43 (3) C1A—O7A—Na1 142.00 (9)
O13A—Na2—O1Wv 141.65 (4) C1A—O7A—H19A 117.2 (15)
O13A—Na2—O13vi 69.45 (3) Na2—O8A—Na1iv 83.21 (3)
O3W—Na3—O8 82.77 (3) Na4v—O8A—Na1iv 94.23 (3)
O7vii—Na3—O3W 98.24 (4) Na4v—O8A—Na2 98.57 (4)
O7vii—Na3—O8 91.42 (4) C1A—O8A—Na1iv 120.62 (8)
O7vii—Na3—O9viii 84.83 (4) C1A—O8A—Na2 135.06 (9)
O7vii—Na3—O11Avii 77.67 (4) C1A—O8A—Na4v 115.13 (8)
O9viii—Na3—O3W 86.33 (4) C6A—O9A—Na1v 127.26 (9)
O9viii—Na3—O8 167.85 (4) Na3vi—O10A—Na2 91.98 (4)
O9viii—Na3—O11Avii 108.24 (4) C6A—O10A—Na2 109.60 (8)
O10Aix—Na3—O3W 101.16 (4) C6A—O10A—Na3vi 141.08 (9)
O10Aix—Na3—O7vii 160.52 (4) C5A—O11A—Na3vii 128.77 (9)
O10Aix—Na3—O8 89.27 (4) C5A—O12A—H19 111.2 (13)
O10Aix—Na3—O9viii 98.11 (4) Na2—O13A—H16A 90.1 (14)
O10Aix—Na3—O11Avii 83.15 (4) C3A—O13A—Na2 108.01 (7)
O11Avii—Na3—O3W 164.23 (4) C3A—O13A—H16A 108.3 (15)
O11Avii—Na3—O8 82.12 (3) O7A—C1A—Na4v 90.36 (8)
O1W—Na4—O12vii 163.29 (4) O7A—C1A—C2A 112.97 (11)
O2W—Na4—O1W 99.15 (4) O8A—C1A—O7A 123.45 (12)
O2W—Na4—O12vii 68.41 (4) O8A—C1A—C2A 123.57 (12)
O3W—Na4—O1W 94.02 (4) C2A—C1A—Na4v 143.09 (9)
O3W—Na4—O2W 165.55 (5) C1A—C2A—H14A 106.4 (10)
O3W—Na4—O12vii 97.48 (4) C1A—C2A—H15A 105.5 (11)
O9viii—Na4—O1W 84.11 (4) C1A—C2A—C3A 116.50 (11)
O9viii—Na4—O2W 95.14 (4) H14A—C2A—H15A 108.4 (15)
O9viii—Na4—O3W 92.09 (4) C3A—C2A—H14A 111.1 (10)
O9viii—Na4—O12vii 107.45 (4) C3A—C2A—H15A 108.6 (11)
O9viii—Na4—O8Av 169.12 (4) O13A—C3A—C2A 107.23 (10)
O8Av—Na4—O1W 85.14 (4) O13A—C3A—C4A 110.39 (10)
O8Av—Na4—O2W 84.91 (4) O13A—C3A—C6A 111.81 (10)
O8Av—Na4—O3W 90.34 (4) C2A—C3A—C4A 109.74 (11)
O8Av—Na4—O12vii 82.72 (3) C2A—C3A—C6A 109.50 (11)
Na4—O1W—Na2v 93.62 (4) C4A—C3A—C6A 108.16 (10)
Na4—O2W—Na1viii 102.60 (4) C3A—C4A—H17A 108.9 (10)
Na4—O3W—Na3 88.36 (4) C3A—C4A—H18A 109.7 (10)
C1—O7—Na3vii 144.02 (9) H17A—C4A—H18A 109.0 (14)
C1—O7—H19 116.4 (14) C5A—C4A—C3A 111.23 (11)
Na2ix—O8—Na3 85.37 (3) C5A—C4A—H17A 107.7 (10)
C1—O8—Na2ix 135.12 (9) C5A—C4A—H18A 110.2 (10)
C1—O8—Na3 116.99 (8) O11A—C5A—O12A 122.21 (12)
Na4i—O9—Na3i 91.51 (4) O11A—C5A—C4A 122.11 (12)
C6—O9—Na3i 129.89 (8) O12A—C5A—C4A 115.66 (12)
C6—O9—Na4i 119.94 (8) O9A—C6A—C3A 116.26 (11)
Na1ii—O10—Na2ix 92.19 (4) O10A—C6A—O9A 125.12 (12)
C6—O10—Na1ii 140.73 (8) O10A—C6A—C3A 118.60 (12)
C6—O10—Na2ix 110.53 (8)
Na1iv—Na2—O8A—Na4v 93.28 (4) O8vi—Na2—O10A—C6A 158.19 (9)
Na1iv—Na2—O8A—C1A −127.35 (13) O8vi—Na2—O13A—C3A −117.77 (8)
Na1iv—Na2—O10A—Na3vi −178.42 (3) O8—Na3—O3W—Na4 −175.84 (4)
Na1iv—Na2—O10A—C6A −31.42 (10) O8—C1—C2—C3 −11.14 (19)
Na1iv—Na2—O13A—C3A 103.13 (8) O9viii—Na3—O3W—Na4 9.53 (4)
Na1viii—Na4—O1W—Na2v −43.16 (3) O9viii—Na3—O8—Na2ix 138.10 (17)
Na1viii—Na4—O3W—Na3 161.99 (4) O9viii—Na3—O8—C1 −82.7 (2)
Na1ii—O10—C6—Na2ix 121.50 (14) O9viii—Na4—O1W—Na2v −173.86 (4)
Na1ii—O10—C6—Na4i −123.34 (11) O9viii—Na4—O2W—Na1viii 155.76 (5)
Na1ii—O10—C6—O9 −99.84 (16) O9viii—Na4—O3W—Na3 −9.99 (4)
Na1ii—O10—C6—C3 79.80 (16) O10ii—Na1—O7A—C1A 165.62 (14)
Na1x—O11—C5—O12 8.17 (19) O10vi—Na2—O8A—Na1iv −10.14 (3)
Na1x—O11—C5—C4 −173.27 (8) O10vi—Na2—O8A—Na4v 83.14 (4)
Na1—O7A—C1A—Na4v 177.29 (11) O10vi—Na2—O8A—C1A −137.49 (12)
Na1—O7A—C1A—O8A −152.86 (11) O10vi—Na2—O13A—C3A 140.54 (7)
Na1—O7A—C1A—C2A 26.7 (2) O11iii—Na1—O7A—C1A −178.65 (15)
Na1iv—O8A—C1A—Na4v 111.85 (10) O12vii—Na4—O1W—Na2v −39.06 (15)
Na1iv—O8A—C1A—O7A 65.38 (15) O12vii—Na4—O2W—Na1viii −97.49 (5)
Na1iv—O8A—C1A—C2A −114.13 (12) O12vii—Na4—O3W—Na3 −117.89 (4)
Na1v—O9A—C6A—O10A 91.30 (15) O13vi—Na2—O8A—Na1iv 55.68 (4)
Na1v—O9A—C6A—C3A −90.26 (13) O13vi—Na2—O8A—Na4v 148.96 (4)
Na2iv—Na1—O7A—C1A 122.96 (14) O13vi—Na2—O8A—C1A −71.67 (13)
Na2ix—Na3—O3W—Na4 −134.10 (3) O13vi—Na2—O10A—Na3vi −60.54 (5)
Na2ix—Na3—O8—C1 139.16 (10) O13vi—Na2—O10A—C6A 86.46 (9)
Na2v—Na4—O2W—Na1viii 28.21 (4) O13vi—Na2—O13A—C3A −177.81 (8)
Na2v—Na4—O3W—Na3 117.97 (3) O13—C3—C4—C5 62.49 (14)
Na2ix—O8—C1—O7 172.37 (9) O13—C3—C6—Na2ix −25.63 (9)
Na2ix—O8—C1—C2 −7.3 (2) O13—C3—C6—Na4i −136.59 (11)
Na2ix—O10—C6—Na4i 115.17 (5) O13—C3—C6—O9 −176.47 (11)
Na2ix—O10—C6—O9 138.67 (11) O13—C3—C6—O10 3.86 (16)
Na2ix—O10—C6—C3 −41.70 (13) C1—C2—C3—O13 64.88 (14)
Na2ix—O13—C3—C2 −88.15 (10) C1—C2—C3—C4 −174.29 (11)
Na2ix—O13—C3—C4 152.17 (8) C1—C2—C3—C6 −57.19 (15)
Na2ix—O13—C3—C6 33.14 (11) C2—C3—C4—C5 −55.72 (14)
Na2—O8A—C1A—Na4v −134.67 (14) C2—C3—C6—Na2ix 93.60 (9)
Na2—O8A—C1A—O7A 178.86 (9) C2—C3—C6—Na4i −17.36 (18)
Na2—O8A—C1A—C2A −0.6 (2) C2—C3—C6—O9 −57.24 (15)
Na2—O10A—C6A—O9A 136.65 (11) C2—C3—C6—O10 123.09 (12)
Na2—O10A—C6A—C3A −41.76 (13) C3—C4—C5—O11 −85.63 (15)
Na2—O13A—C3A—C2A −89.61 (10) C3—C4—C5—O12 93.01 (14)
Na2—O13A—C3A—C4A 150.89 (8) C4—C3—C6—Na2ix −147.46 (9)
Na2—O13A—C3A—C6A 30.44 (11) C4—C3—C6—Na4i 101.58 (14)
Na3vi—Na2—O8A—Na1iv 178.64 (3) C4—C3—C6—O9 61.70 (14)
Na3vi—Na2—O8A—Na4v −88.08 (4) C4—C3—C6—O10 −117.96 (12)
Na3vi—Na2—O8A—C1A 51.29 (13) C6vi—Na2—O8A—Na1iv −1.39 (4)
Na3vi—Na2—O10A—C6A 147.00 (10) C6vi—Na2—O8A—Na4v 91.88 (4)
Na3vi—Na2—O13A—C3A −78.33 (8) C6vi—Na2—O8A—C1A −128.75 (12)
Na3vii—O7—C1—O8 −148.29 (11) C6vi—Na2—O10A—Na3vi 4.19 (12)
Na3vii—O7—C1—C2 31.4 (2) C6vi—Na2—O10A—C6A 151.19 (11)
Na3—O8—C1—O7 59.85 (15) C6vi—Na2—O13A—C3A 166.14 (7)
Na3—O8—C1—C2 −119.78 (11) C6viii—Na4—O1W—Na2v −156.30 (5)
Na3i—O9—C6—Na2ix 146.76 (11) C6viii—Na4—O2W—Na1viii 141.70 (5)
Na3i—O9—C6—Na4i 121.40 (13) C6viii—Na4—O3W—Na3 0.92 (5)
Na3i—O9—C6—O10 82.71 (16) C6—C3—C4—C5 −175.35 (11)
Na3i—O9—C6—C3 −96.93 (12) O7A—C1A—C2A—C3A 164.94 (11)
Na3vi—O10A—C6A—O9A −103.39 (16) O8Aiv—Na1—O7A—C1A 99.65 (15)
Na3vi—O10A—C6A—C3A 78.20 (17) O8A—Na2—O10A—Na3vi −178.68 (4)
Na3vii—O11A—C5A—O12A 12.16 (18) O8A—Na2—O10A—C6A −31.68 (9)
Na3vii—O11A—C5A—C4A −169.68 (9) O8A—Na2—O13A—C3A 55.33 (8)
Na4i—Na1—O7A—C1A 63.79 (15) O8Av—Na4—O1W—Na2v 4.45 (4)
Na4v—Na2—O8A—Na1iv −93.28 (4) O8Av—Na4—O2W—Na1viii −13.32 (5)
Na4v—Na2—O8A—C1A 139.37 (14) O8Av—Na4—O3W—Na3 159.40 (4)
Na4v—Na2—O10A—Na3vi 141.48 (3) O8A—C1A—C2A—C3A −15.50 (19)
Na4v—Na2—O10A—C6A −71.52 (8) O9Av—Na1—O7A—C1A −64.53 (15)
Na4v—Na2—O13A—C3A 38.47 (8) O10A—Na2—O8A—Na1iv 179.78 (3)
Na4i—O9—C6—Na2ix 25.4 (2) O10A—Na2—O8A—Na4v −86.94 (4)
Na4i—O9—C6—O10 −38.70 (17) O10A—Na2—O8A—C1A 52.43 (12)
Na4i—O9—C6—C3 141.66 (9) O10A—Na2—O13A—C3A −37.02 (7)
Na4vii—O12—C5—O11 105.06 (18) O10Aix—Na3—O3W—Na4 −88.02 (4)
Na4vii—O12—C5—C4 −73.6 (2) O10Aix—Na3—O8—Na2ix 10.42 (4)
Na4v—O8A—C1A—O7A −46.47 (16) O10Aix—Na3—O8—C1 149.57 (9)
Na4v—O8A—C1A—C2A 134.02 (11) O11Avii—Na3—O3W—Na4 167.43 (13)
Na4v—C1A—C2A—C3A 39.8 (2) O11Avii—Na3—O8—Na2ix −72.77 (3)
O1Wv—Na2—O8A—Na1iv −97.84 (4) O11Avii—Na3—O8—C1 66.39 (9)
O1Wv—Na2—O8A—Na4v −4.56 (4) O13A—Na2—O8A—Na1iv 112.08 (3)
O1Wv—Na2—O8A—C1A 134.81 (12) O13A—Na2—O8A—Na4v −154.64 (4)
O1Wv—Na2—O10A—Na3vi 98.48 (4) O13A—Na2—O8A—C1A −15.27 (12)
O1Wv—Na2—O10A—C6A −114.52 (9) O13A—Na2—O10A—Na3vi −105.03 (4)
O1Wv—Na2—O13A—C3A 2.52 (11) O13A—Na2—O10A—C6A 41.97 (8)
O1W—Na4—O2W—Na1viii 70.91 (5) O13A—C3A—C4A—C5A 59.20 (14)
O1W—Na4—O3W—Na3 74.25 (4) O13A—C3A—C6A—O9A −171.79 (11)
O2Wi—Na1—O7A—C1A 24.84 (15) O13A—C3A—C6A—O10A 6.76 (16)
O2W—Na4—O1W—Na2v −79.59 (4) C1Av—Na4—O1W—Na2v 16.94 (5)
O2W—Na4—O3W—Na3 −130.03 (17) C1Av—Na4—O2W—Na1viii −32.71 (5)
O3W—Na3—O8—Na2ix 111.76 (4) C1Av—Na4—O3W—Na3 176.38 (4)
O3W—Na3—O8—C1 −109.08 (10) C1A—C2A—C3A—O13A 65.52 (14)
O3W—Na4—O1W—Na2v 94.45 (4) C1A—C2A—C3A—C4A −174.55 (11)
O3W—Na4—O2W—Na1viii −84.54 (18) C1A—C2A—C3A—C6A −55.98 (15)
O7vii—Na3—O3W—Na4 93.76 (4) C2A—C3A—C4A—C5A −58.78 (14)
O7vii—Na3—O8—Na2ix −150.11 (4) C2A—C3A—C6A—O9A −53.09 (15)
O7vii—Na3—O8—C1 −10.96 (9) C2A—C3A—C6A—O10A 125.46 (12)
O7—C1—C2—C3 169.19 (11) C3A—C4A—C5A—O11A −90.55 (15)
O8vi—Na2—O8A—Na1iv −105.8 (2) C3A—C4A—C5A—O12A 87.73 (14)
O8vi—Na2—O8A—Na4v −12.5 (2) C4A—C3A—C6A—O9A 66.46 (14)
O8vi—Na2—O8A—C1A 126.9 (2) C4A—C3A—C6A—O10A −114.99 (13)
O8vi—Na2—O10A—Na3vi 11.19 (4) C6A—C3A—C4A—C5A −178.18 (11)

Symmetry codes: (i) x−1, y, z; (ii) −x−1, −y+2, −z+2; (iii) x, y−1, z+1; (iv) −x−1, −y+1, −z+2; (v) −x, −y+1, −z+2; (vi) x, y−1, z; (vii) −x, −y+2, −z+1; (viii) x+1, y, z; (ix) x, y+1, z; (x) x, y+1, z−1.

(na2c_DFT). Crystal data

C12H12Na4O14(H2O)3 α = 68.4610°
Mr = 526.22 β = 79.6170°
Triclinic, P1 γ = 81.7990°
a = 8.6713 Å V = 925.63 Å3
b = 10.6475 Å Z = 2
c = 10.9961 Å T = 100 K

(na2c_DFT). Data collection

h = → l = →
k = →

(na2c_DFT). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Na1 −0.37343 0.67657 1.09352 0.01145*
Na2 −0.26397 0.20115 0.79858 0.01118*
Na3 0.08732 1.08255 0.68250 0.01112*
Na4 0.34457 0.86390 0.85431 0.01460*
O7 −0.16782 0.95531 0.52502 0.01270*
O8 −0.20053 1.04584 0.68290 0.01230*
O9 −0.64112 1.06940 0.68737 0.01090*
O10 −0.53712 1.16842 0.79941 0.01070*
O11 −0.47290 1.51265 0.29363 0.01080*
O12 −0.49766 1.32881 0.24827 0.01140*
O13 −0.36072 1.31975 0.58091 0.00980*
H16 −0.42399 1.38378 0.62003 0.02300*
C1 −0.23465 1.04470 0.57867 0.00910*
C2 −0.35390 1.14280 0.49792 0.00920*
H14 −0.42355 1.08420 0.46821 0.00900*
H15 −0.28636 1.20526 0.40698 0.01500*
C3 −0.46003 1.23681 0.56155 0.00870*
C4 −0.58433 1.32299 0.47061 0.00940*
H17 −0.64219 1.39939 0.51186 0.01100*
H18 −0.67129 1.25721 0.47345 0.00600*
C5 −0.51420 1.39486 0.32859 0.00900*
C6 −0.55479 1.15096 0.69442 0.00870*
O7A −0.33595 0.47056 1.05018 0.01370*
O8A −0.32484 0.31834 0.95223 0.01120*
O9A 0.10266 0.30045 0.93971 0.01250*
O10A 0.00830 0.19041 0.83347 0.01180*
O11A −0.01570 0.69714 0.48311 0.01120*
O12A −0.01724 0.75439 0.65877 0.01140*
O13A −0.15225 0.41596 0.68785 0.00990*
H16A −0.08773 0.38671 0.61789 0.02900*
C1A −0.27827 0.42098 0.95692 0.00950*
C2A −0.15358 0.50329 0.85782 0.00990*
H14A −0.08261 0.53524 0.91194 0.01100*
H15A −0.21626 0.59489 0.79720 0.01900*
C3A −0.05159 0.43504 0.76628 0.00870*
C4A 0.07944 0.52678 0.67668 0.00970*
H17A 0.14347 0.47918 0.60764 0.01400*
H18A 0.16142 0.53410 0.73772 0.01000*
C5A 0.01259 0.66803 0.59841 0.00880*
C6A 0.02761 0.29683 0.85249 0.00910*
H19A −0.41226 0.40666 1.13119 0.07800*
H19 −0.09903 0.87170 0.58711 0.06900*
O1W 0.25806 0.99725 0.99158 0.01550*
H1W 0.34046 1.05682 0.93555 0.04700*
H2W 0.16299 1.05211 0.95978 0.03700*
O2W 0.61368 0.82806 0.87514 0.01610*
H3W 0.68826 0.89557 0.85395 0.04700*
H4W 0.64281 0.78276 0.81112 0.06700*
O3W 0.08969 0.85012 0.82260 0.01340*
H5W 0.05984 0.80182 0.77073 0.03600*
H6W 0.01544 0.82092 0.90413 0.02900*

(na2c_DFT). Bond lengths (Å)

Na1—O10i 2.333 C1—C2 1.513
Na1—O11ii 2.357 C2—H14 1.090
Na1—O7A 2.377 C2—H15 1.094
Na1—O8Aiii 2.741 C2—C3 1.536
Na1—O9Aiv 2.344 C3—C4 1.561
Na1—O2Wv 2.363 C3—C6 1.564
Na2—O8vi 2.385 C4—H17 1.092
Na2—O10vi 2.441 C4—H18 1.089
Na2—O13vi 2.496 C4—C5 1.519
Na2—O8A 2.393 O7A—C1A 1.311
Na2—O10A 2.440 O7A—H19A 1.079
Na2—O13A 2.411 O8A—Na1iii 2.741
Na2—O1Wiv 2.494 O8A—Na4iv 2.292
Na3—O7vii 2.424 O8A—C1A 1.239
Na3—O8 2.580 O9A—Na1iv 2.344
Na3—O9viii 2.348 O9A—C6A 1.267
Na3—O10Aix 2.304 O10A—Na3vi 2.304
Na3—O11Avii 2.462 O10A—C6A 1.263
Na3—O3W 2.387 O11A—Na3vii 2.462
Na4—O9viii 2.284 O11A—C5A 1.251
Na4—O8Aiv 2.292 O12A—C5A 1.293
Na4—O1W 2.391 O13A—H16A 0.986
Na4—O2W 2.349 O13A—C3A 1.413
Na4—O3W 2.331 C1A—C2A 1.506
O7—Na3vii 2.424 C2A—H14A 1.090
O7—C1 1.312 C2A—H15A 1.092
O7—H19 1.079 C2A—C3A 1.535
O8—Na2ix 2.385 C3A—C4A 1.556
O8—C1 1.239 C3A—C6A 1.568
O9—Na4v 2.284 C4A—H17A 1.092
O9—Na3v 2.348 C4A—H18A 1.090
O9—C6 1.255 C4A—C5A 1.523
O10—Na2ix 2.441 O1W—Na2iv 2.494
O10—Na1i 2.333 O1W—H1W 0.988
O10—C6 1.273 O1W—H2W 0.980
O11—Na1x 2.357 O2W—Na1viii 2.363
O11—C5 1.254 O2W—H3W 0.972
O12—C5 1.295 O2W—H4W 0.971
O13—Na2ix 2.496 O3W—H5W 0.981
O13—H16 0.987 O3W—H6W 0.979
O13—C3 1.410

Symmetry codes: (i) −x−1, −y+2, −z+2; (ii) x, y−1, z+1; (iii) −x−1, −y+1, −z+2; (iv) −x, −y+1, −z+2; (v) x−1, y, z; (vi) x, y−1, z; (vii) −x, −y+2, −z+1; (viii) x+1, y, z; (ix) x, y+1, z; (x) x, y+1, z−1.

(na2c_DFT). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O7A—H19A···O12 1.079 1.393 2.465 171.1
O7—H19···O12A 1.079 1.382 2.456 172.5
O13A—H16A···O11A 0.986 1.725 2.698 168.3
O13—H16···O11 0.987 1.760 2.743 173.4
O1W—H1W···O10 0.988 1.806 2.772 165.0
O3W—H5W···O12A 0.981 1.751 2.714 165.9
O3W—H6W···O9A 0.979 1.945 2.881 159.0
O1W—H2W···O10A 0.980 2.122 3.067 161.4
O2W—H4W···O12 0.971 2.171 2.877 128.5
O2W—H3W···O8 0.972 2.146 2.946 138.6
O2W—H3W···O1W 0.972 2.503 3.166 125.3

References

  1. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2004). XL and XM. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dassault Systemes (2014). Materials Studio. BIOVIA, San Diego CA.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571–573.
  7. Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11–19.
  8. Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Kaduk, J. A. & Stern, C. (2016a). Private Communication (refcodes 1446457 and 1446458). CCDC, Cambridge, England.
  11. Kaduk, J. A. & Stern, C. (2016b). Private Communication (refcodes 1446460 and 1446461). CCDC, Cambridge, England.
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B. Submitted.
  14. Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 170–173. [DOI] [PMC free article] [PubMed]
  15. Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 403–406. [DOI] [PMC free article] [PubMed]
  16. Rammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 793–796. [DOI] [PMC free article] [PubMed]
  17. Rammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 854–857. [DOI] [PMC free article] [PubMed]
  18. Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032. [DOI] [PMC free article] [PubMed]
  19. Wolff, P. de (1966). ICDD Grant-in-Aid, PDF entry 00-016-1182.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) na2c, na2c_DFT. DOI: 10.1107/S2056989016009014/vn2112sup1.cif

e-72-00943-sup1.cif (127.7KB, cif)

Structure factors: contains datablock(s) na2c. DOI: 10.1107/S2056989016009014/vn2112na2csup2.hkl

e-72-00943-na2csup2.hkl (158.7KB, hkl)

Structure factors: contains datablock(s) na2c_DFT. DOI: 10.1107/S2056989016009014/vn2112na2c_DFTsup3.hkl

CCDC references: 1483449, 1483448

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES