Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jun 14;72(Pt 7):947–950. doi: 10.1107/S2056989016009403

Crystal structure of dimethyl 3,4,5,6-tetra­phenyl­cyclo­hexa-3,5-diene-1,2-di­carboxyl­ate

Fred H Greenberg a, Alexander Y Nazarenko a,*
PMCID: PMC4992912  PMID: 27555937

In the title compound, C34H28O4, the cyclo­hexa­diene ring has a screw-boat conformation. All four phenyl rings in the two independent mol­ecules are arranged in a propeller-like conformation. The two mol­ecules exhibit S,R- and R,S- chirality and are connected via C—H⋯O inter­molecular inter­actions.

Keywords: crystal structure; 1,3-cyclo­hexa­diene; conformation

Abstract

In the title compound, C34H28O4, the cyclo­hexa­diene ring has a screw-boat conformation with a torsion angle between the double bonds being on average ca 15° [15.2 (3) and −15.3 (3) in the two independent mol­ecules]. All four phenyl rings in both mol­ecules are arranged in a propeller-like conformation. The two mol­ecules exhibit S,R- and R,S- chirality, respectively, and are connected via C—H⋯O inter­molecular inter­actions. In turn, these weakly bound dimers form the mol­ecular crystal.

Chemical context  

Addition reactions of tetra­phenyl­cyclo­penta­dienone, often abbreviated to ‘tetra­cyclone’, were reviewed by Allen (1945, 1962). Tetra­cyclone reacts with unsaturated anhydrides, acids and esters, forming a number of polyfunctional carbonyl-bridge compounds. These species easily loose carbon monoxide to form di­hydro­benzene (cyclo­hexa­diene) derivatives. It was found that the use of maleic and fumaric esters yields various stereoisomers. The photochemical behavior of these compounds was studied (Fuchs & Yankelievich, 1968), showing a number of products including dimethyl tetra­phenyl­phthalate. The relative simplicity of these reactions and the rich organic chemistry and spectroscopy of appropriate products make them attractive for use in undergraduate organic chemistry teaching laboratories.graphic file with name e-72-00947-scheme1.jpg

This study provides an opportunity to investigate the geometry of 1,3-cyclo­hexa­diene rings surrounded by bulky substituents with no strong inter­molecular inter­actions.

Database survey  

Conjugation of two double bonds favors a coplanar π-system with a dihedral angle close to zero. However, in cyclic 1,3-cyclo­hexa­diene mol­ecules angle strain and steric effects promote a non-planar structure (Rabideau & Sygula, 1989). Even for non-cyclic systems, because of steric effects, the geometry of the higher energy non-trans conformer of 1,3-butadiene in the gas phase is non-planar s-gauche (De Maré et al., 1997). Addition of bulky substituents to the 1,3-butadiene mol­ecule changes the conformational preference from trans to gauche even in the ground state.

The geometry of unsubstituted 1,3-cyclo­hexa­diene was studied using electron diffraction in the gas phase (Traetteberg, 1968; Rabideau & Sygula, 1989) showing a dihedral angle of around 18°. The crystal structure of solid unsubstituted 1,3-cyclo­hexa­diene is not reported. However, the 1,3-cyclo­hexa­diene mol­ecule has been incorporated into microporous vanadium benzene­dicarboxyl­ate (Wang et al., 2011) showing an almost flat conformation with a dihedral angle of 3.9° (refcode IXODUV). There are a large number of known 1,3-cyclo­hexa­diene complexes with various metals, all with a mostly planar diene fragment. There are seventeen reported hexa­substituted 1,3-cyclo­hexa­diene structures deposited in the Cambridge Structural Database (CSD Version 5.37; Groom et al., 2016). Of these structures, nine show a practically flat butadiene fragment with dihedral angles less than 3°. Two more (refcodes ONIWUE and TESNIT) show dihedral angles of 4.5 and 4.7°, respectively. Only four structures demonstrate dihedral angles similar to that of free 1,3-cyclo­hexa­diene in the gas phase: GABGEQ (18.8°), HEUZOX (22.5°), JEKFUB (18.6°) and PUBMEG (20.1°). This last structure of trans-dimethyl 3,4,5,6-tetra­methyl­cyclo­hexa-3,5-diene-1,2-di­carboxyl­ate (Takahashi et al., 1998) is the closest to the title compound, with a cis conformation as for the title compound.

Structural commentary  

There are two independent mol­ecules (Figs. 1 and 2) in the asymmetric unit of the title compound, with S,R-chirality and R,S-chirality, respectively (Figs. 1, 2). After inversion they demonstrate a good overlay (Fig. 3) with an average deviation of 0.14 Å.

Figure 1.

Figure 1

Numbering scheme of the title compound with 50% probability elipsoids (S,R-isomer).

Figure 2.

Figure 2

Numbering scheme of the title compound with 50% probability elipsoids (R,S-isomer).

Figure 3.

Figure 3

Overlay of the two independent mol­ecules, after inversion.

The cyclo­hexa­diene rings (see Fig. 4, Table 1) are non-planar in a screw-boat conformation (Boeyens, 1978) with puckering parameters (C1–C6) Q = 0.437 (2) Å, θ = 115.8 (3)° and φ = 213.1 (3); (C101–C106) Q = 0.463 (2) Å, θ = 63.7 (2)° and φ = 33.5 (3)°.

Figure 4.

Figure 4

Cyclo­hexa­diene ring with 50% probability elipsoids.

Table 1. Deviation from the mean plane of cyclo­hexa­diene ring (Å).

C1 −0.269 (2) C101 −0.286 (2)
C2 +0.280 (2) C102 +0.298 (2)
C3 −0.089 (2) C103 −0.096 (2)
C4 −0.112 (2) C104 −0.114 (2)
C5 +0.126 (2) C105 +0.131 (2)
C6 +0.064 (2) C106 +0.067 (2)

Torsion angles between Csp3 atoms indicate a gauche conformation; the dihedral angles between the two double bonds are 15.2 (3) and −15.3 (3) for the two independent mol­ecules (see Table 2). These values are practically the same as observed for free 1,3-cyclo­hexa­diene in the gas phase: one can argue that the much lower values reported for 1,3-cyclo­hexa­dienes in the crystal state are caused by inter­molecular inter­actions which may favor a flat butadiene fragment.

Table 2. Selected torsion angles (°).

C4—C3—C2—C1 −35.7 (3) C105—C104—C103—C102 −5.2 (3)
C4—C5—C6—C1 0.7 (3) C5—C4—C3—C2 4.3 (3)
C3—C4—C5—C6 15.2 (3) C5—C6—C1—C2 −32.9 (3)
C3—C2—C1—C6 48.2 (2) C106—C101—C102—C103 −51.3 (2)
C101—C102—C103—C104 38.2 (3) C102—C101—C106—C105 35.2 (3)
C104—C105—C106—C101 −1.3 (3) C103—C104—C105—C106 −15.3 (3)

All six substituents are practically flat. Both ester fragments are almost perpendicular to the mean plane of the cyclo­hexa­diene ring (Table 3). All four phenyl rings in both mol­ecules are arranged in a propeller-like formation with angles between 46 and 74° (see Table 3 for exact numbers) from the mean plane of the cyclo­hexa­diene ring. This propeller-like formation is probably inherited from the precursor tetra­cyclone mol­ecule (refcode KIKTUT02; Pal et al., 2014). Because of the large angles between the planes of the double bonds and each phenyl ring, very little conjugation may be expected. Therefore, substituents serve mainly as bulky decoration, protecting the cyclo­hexa­diene ring from external steric influences.

Table 3. Dihedral angles between cyclo­hexa­diene mean plane and substituent mean planes (°) .

Atoms angle atoms angle
C8/O2/C7/O1 79.35 (9) C108–O101 71.07 (10)
C10/O4/C9/O3 97.38 (13) C110–O104 97.82 (14)
C11–C16 59.72 (8) C111–C116 57.22 (8)
C17–C22 46.53 (7) C117–C122 46.12 (8)
C23–C28 56.38 (8) C123–C128 56.89 (8)
C29–C34 69.88 (8) C129–C134 73.46 (8)

Supra­molecular features  

There are no usual hydrogen-bonding or stacking inter­actions in this structure.

Two hydrogen atoms of the cyclo­hexa­diene group (H101 and H102) form short contacts (Desiraju & Steiner, 1999) with carbonyl oxygen atoms of another mol­ecule (Table 4, Fig. 5). The corresponding hydrogen atoms of the other mol­ecule (H1 and H2) do not have acceptors available for such bonding. These inter­molecular inter­actions, however weak they are, keep together a pair of mol­ecules with opposite chirality. Two short intra­molecular C—H⋯O contacts within each mol­ecule are also observed and may influence the mol­ecular conformation. There are no other bonding short contacts between the weakly bound dimers and they form a usual mol­ecular crystal.

Table 4. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C101—H101⋯O2 0.99 (3) 2.39 (3) 3.384 (3) 176 (2)
C102—H102⋯O4 0.96 (3) 2.48 (3) 3.242 (3) 136 (2)
C16—H16⋯O4 0.95 2.59 3.407 (3) 145
C116—H116⋯O104 0.95 2.54 3.388 (3) 148

Figure 5.

Figure 5

Short C—H⋯O contacts connecting two mol­ecules into a weakly bonded dimer in the crystal.

Synthesis and crystallization  

The title compound was obtained by reaction of tetra­phenyl­cyclo­penta­dienone (common name tetra­cyclone) with di­methyl­maleate following Allen & Sheps (1934). GC–MS analysis of the colorless crystalline product dissolved in di­chloro­methane shows one main compound with a parent peak at 500 which is consistent with the formula weight of the title compound. Because all precursor compounds were non-chiral and synthetic conditions should not induce chirality, we expected to see a racemic product. Crystallization from aceto­nitrile resulted in several hexa­gonal flakes, mostly with inter­grown smaller crystals. Several crystals were tested, all resulting in essentially the same chiral trigonal structure. The highest quality structure, from a partial racemically twinned crystal, is reported here.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. The structure was refined as a two-component inversion twin. Cyclo­hexa­diene hydrogen atoms H1, H2, H101 and H102 were refined in isotropic approximation with U iso = 1.2Ui so(C). All aromatic hydrogen atoms were refined with riding coordinates with C—H = 0.95–0.98 Å and U iso = 1.2U iso(C). Idealized methyl groups were refined as rotating groups with U iso = 1.5Uiso(C).

Table 5. Experimental details.

Crystal data
Chemical formula C34H28O4
M r 500.56
Crystal system, space group Trigonal, P32
Temperature (K) 173
a, c (Å) 10.8330 (12), 39.169 (5)
V3) 3980.8 (12)
Z 6
Radiation type Cu Kα
μ (mm−1) 0.65
Crystal size (mm) 0.59 × 0.34 × 0.13
 
Data collection
Diffractometer Bruker Photon-100 CMOS
Absorption correction Multi-scan (SADABS; Bruker,2014/5)
T min, T max 0.669, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 53613, 10773, 10345
R int 0.043
(sin θ/λ)max−1) 0.637
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.091, 1.05
No. of reflections 10773
No. of parameters 702
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.15
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.38 (16)

Computer programs: APEX2 and SAINT (Bruker, 2013), XT (Sheldrick, 2015), XL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016009403/zl2665sup1.cif

e-72-00947-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016009403/zl2665Isup2.hkl

e-72-00947-Isup2.hkl (854.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016009403/zl2665Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989016009403/zl2665Isup4.cml

CCDC reference: 1484412

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the State University of New York for the acquisition and maintenance of X-ray diffractometer is gratefully acknowledged.

supplementary crystallographic information

Crystal data

C34H28O4 Dx = 1.253 Mg m3
Mr = 500.56 Cu Kα radiation, λ = 1.54178 Å
Trigonal, P32 Cell parameters from 9883 reflections
a = 10.8330 (12) Å θ = 3.4–78.4°
c = 39.169 (5) Å µ = 0.65 mm1
V = 3980.8 (12) Å3 T = 173 K
Z = 6 Plate, colourless
F(000) = 1584 0.59 × 0.34 × 0.13 mm

Data collection

Bruker Photon-100 CMOS diffractometer 10345 reflections with I > 2σ(I)
Radiation source: sealedtube Rint = 0.043
φ and ω scans θmax = 79.0°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Bruker,2014/5) h = −13→12
Tmin = 0.669, Tmax = 0.754 k = −13→13
53613 measured reflections l = −48→48
10773 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.4031P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.19 e Å3
10773 reflections Δρmin = −0.15 e Å3
702 parameters Absolute structure: Refined as an inversion twin
1 restraint Absolute structure parameter: 0.38 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.1. Twinned data refinement Scales: 0.62 (16) 0.38 (16) 2. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All C(H,H,H) groups 3.a Aromatic/amide H refined with riding coordinates: C21(H21), C34(H34), C18(H18), C30(H30), C134(H134), C24(H24), C22(H22), C12(H12), C133(H133), C16(H16), C112(H112), C130(H130), C28(H28), C124(H124), C113(H113), C119(H119), C19(H19), C131(H131), C15(H15), C118(H118), C120(H120), C31(H31), C114(H114), C116(H116), C25(H25), C27(H27), C121(H121), C122(H122), C128(H128), C13(H13), C20(H20), C132(H132), C26(H26), C14(H14), C33(H33), C32(H32), C126(H126), C127(H127), C115(H115), C125(H125) 3.b Idealised Me refined as rotating group: C8(H8A,H8B,H8C), C110(H11A,H11B,H11C), C10(H10A,H10B,H10C), C108(H10D,H10E, H10F)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O4 0.79329 (17) 0.30493 (18) 0.54107 (4) 0.0438 (4)
O101 0.96274 (18) 0.63537 (17) 0.51401 (4) 0.0443 (4)
O103 1.02631 (18) 0.4316 (2) 0.41723 (4) 0.0475 (4)
O2 0.56790 (17) 0.38169 (16) 0.51915 (4) 0.0434 (4)
O1 0.3803 (2) 0.25072 (18) 0.48545 (4) 0.0458 (4)
O3 0.64592 (18) 0.29005 (17) 0.58294 (4) 0.0452 (4)
O102 1.09927 (18) 0.5677 (2) 0.48612 (5) 0.0540 (4)
O104 1.03157 (19) 0.27494 (18) 0.45336 (5) 0.0508 (4)
C9 0.6769 (2) 0.2477 (2) 0.55396 (5) 0.0345 (4)
C123 0.7593 (2) 0.5516 (2) 0.37918 (6) 0.0363 (4)
C29 0.2698 (2) 0.2158 (2) 0.56419 (5) 0.0329 (4)
C7 0.4665 (2) 0.2687 (2) 0.51152 (5) 0.0355 (4)
C4 0.4035 (2) −0.0443 (2) 0.58720 (5) 0.0346 (4)
C3 0.5035 (2) −0.0149 (2) 0.56313 (5) 0.0340 (4)
C23 0.2515 (2) 0.0341 (2) 0.62110 (5) 0.0354 (4)
C109 0.9775 (2) 0.3424 (2) 0.44350 (6) 0.0356 (4)
C101 0.8547 (2) 0.4732 (2) 0.46876 (5) 0.0327 (4)
H101 0.772 (3) 0.452 (3) 0.4837 (7) 0.039*
C104 0.6822 (2) 0.3191 (2) 0.41216 (5) 0.0333 (4)
C105 0.7663 (2) 0.4780 (2) 0.41074 (5) 0.0328 (4)
C107 0.9869 (2) 0.5616 (2) 0.49006 (5) 0.0362 (4)
C5 0.3298 (2) 0.0406 (2) 0.58914 (5) 0.0333 (4)
C106 0.8498 (2) 0.5531 (2) 0.43712 (5) 0.0318 (4)
C102 0.8425 (2) 0.3301 (2) 0.45915 (5) 0.0327 (4)
H102 0.829 (3) 0.276 (3) 0.4797 (7) 0.039*
C2 0.5490 (2) 0.1126 (2) 0.53935 (5) 0.0335 (4)
H2 0.586 (3) 0.095 (3) 0.5182 (7) 0.040*
C6 0.3366 (2) 0.1245 (2) 0.56296 (5) 0.0322 (4)
C129 0.9408 (2) 0.7112 (2) 0.43578 (6) 0.0342 (4)
C11 0.5749 (2) −0.1004 (2) 0.55719 (6) 0.0371 (4)
C21 0.4450 (3) −0.2535 (3) 0.65930 (7) 0.0527 (6)
H21 0.5199 −0.2513 0.6724 0.063*
C34 0.3107 (3) 0.3209 (2) 0.58899 (6) 0.0397 (5)
H34 0.3819 0.3349 0.6052 0.048*
C18 0.2271 (3) −0.2583 (2) 0.62137 (6) 0.0418 (5)
H18 0.1516 −0.2602 0.6086 0.050*
C103 0.7127 (2) 0.2471 (2) 0.43591 (5) 0.0337 (4)
C111 0.6241 (2) 0.0917 (2) 0.44298 (6) 0.0359 (4)
C30 0.1673 (2) 0.1994 (3) 0.54024 (6) 0.0434 (5)
H30 0.1397 0.1294 0.5228 0.052*
C134 1.0485 (2) 0.7733 (2) 0.41147 (6) 0.0401 (5)
H134 1.0651 0.7145 0.3963 0.048*
C1 0.4199 (2) 0.1303 (2) 0.53089 (5) 0.0326 (4)
H1 0.357 (3) 0.052 (3) 0.5158 (7) 0.039*
C17 0.3680 (2) −0.1561 (2) 0.61388 (5) 0.0375 (4)
C24 0.1072 (3) −0.0091 (2) 0.62101 (7) 0.0448 (5)
H24 0.0548 −0.0382 0.6003 0.054*
C22 0.4763 (3) −0.1550 (3) 0.63322 (6) 0.0440 (5)
H22 0.5728 −0.0861 0.6286 0.053*
C12 0.4937 (3) −0.2481 (2) 0.55401 (6) 0.0440 (5)
H12 0.3930 −0.2941 0.5563 0.053*
C133 1.1322 (3) 0.9209 (3) 0.40914 (7) 0.0529 (6)
H133 1.2055 0.9623 0.3925 0.063*
C117 0.5695 (2) 0.2447 (2) 0.38556 (6) 0.0371 (4)
C16 0.7221 (3) −0.0358 (3) 0.55332 (7) 0.0479 (5)
H16 0.7794 0.0649 0.5551 0.057*
C112 0.4757 (2) 0.0265 (2) 0.44520 (6) 0.0387 (4)
H112 0.4305 0.0803 0.4403 0.046*
C130 0.9202 (3) 0.7994 (2) 0.45808 (6) 0.0429 (5)
H130 0.8489 0.7587 0.4752 0.051*
C28 0.3246 (3) 0.0744 (3) 0.65205 (6) 0.0469 (5)
H28 0.4232 0.1038 0.6526 0.056*
C124 0.7148 (3) 0.6522 (2) 0.38033 (7) 0.0473 (5)
H124 0.6850 0.6725 0.4014 0.057*
C113 0.3938 (3) −0.1154 (3) 0.45445 (6) 0.0458 (5)
H113 0.2931 −0.1580 0.4557 0.055*
C119 0.3685 (3) 0.2182 (3) 0.35267 (7) 0.0509 (6)
H119 0.2984 0.2446 0.3485 0.061*
C19 0.1960 (3) −0.3573 (3) 0.64730 (7) 0.0493 (6)
H19 0.0997 −0.4267 0.6520 0.059*
C131 1.0040 (3) 0.9472 (3) 0.45532 (8) 0.0554 (7)
H131 0.9885 1.0071 0.4703 0.066*
C15 0.7860 (3) −0.1173 (3) 0.54693 (8) 0.0566 (7)
H15 0.8866 −0.0720 0.5445 0.068*
C118 0.4674 (2) 0.2838 (2) 0.37867 (6) 0.0422 (5)
H118 0.4654 0.3563 0.3919 0.051*
C120 0.3719 (3) 0.1143 (3) 0.33279 (7) 0.0559 (7)
H120 0.3049 0.0701 0.3148 0.067*
C31 0.1052 (3) 0.2850 (3) 0.54173 (8) 0.0554 (7)
H31 0.0353 0.2732 0.5254 0.066*
C114 0.4573 (3) −0.1955 (3) 0.46184 (8) 0.0539 (6)
H114 0.4010 −0.2924 0.4685 0.065*
C116 0.6871 (3) 0.0096 (3) 0.45039 (8) 0.0498 (6)
H116 0.7878 0.0514 0.4493 0.060*
C25 0.0393 (3) −0.0097 (3) 0.65115 (9) 0.0627 (8)
H25 −0.0591 −0.0381 0.6508 0.075*
C27 0.2558 (4) 0.0723 (3) 0.68193 (7) 0.0617 (8)
H27 0.3071 0.1000 0.7028 0.074*
C121 0.4727 (3) 0.0754 (3) 0.33914 (7) 0.0529 (6)
H121 0.4751 0.0043 0.3254 0.063*
C8 0.4058 (4) 0.3808 (3) 0.46891 (7) 0.0588 (7)
H8A 0.3398 0.3574 0.4497 0.088*
H8B 0.5041 0.4326 0.4605 0.088*
H8C 0.3909 0.4403 0.4853 0.088*
C122 0.5707 (3) 0.1388 (2) 0.36532 (6) 0.0439 (5)
H122 0.6391 0.1101 0.3696 0.053*
C128 0.8006 (3) 0.5232 (3) 0.34810 (6) 0.0479 (5)
H128 0.8302 0.4543 0.3468 0.058*
C13 0.5581 (3) −0.3293 (3) 0.54756 (7) 0.0509 (6)
H13 0.5012 −0.4300 0.5456 0.061*
C20 0.3049 (4) −0.3547 (3) 0.66614 (7) 0.0543 (7)
H20 0.2837 −0.4225 0.6838 0.065*
C132 1.1094 (3) 1.0066 (3) 0.43078 (8) 0.0598 (8)
H132 1.1662 1.1073 0.4289 0.072*
C26 0.1132 (4) 0.0303 (3) 0.68154 (8) 0.0677 (9)
H26 0.0660 0.0290 0.7021 0.081*
C14 0.7037 (3) −0.2644 (3) 0.54406 (8) 0.0543 (6)
H14 0.7477 −0.3199 0.5397 0.065*
C33 0.2479 (3) 0.4054 (3) 0.59017 (7) 0.0517 (6)
H33 0.2762 0.4768 0.6072 0.062*
C32 0.1450 (3) 0.3866 (3) 0.56682 (8) 0.0562 (7)
H32 0.1015 0.4440 0.5680 0.067*
C110 1.1609 (3) 0.4582 (4) 0.40345 (8) 0.0621 (7)
H11A 1.1830 0.5166 0.3828 0.093*
H11B 1.1551 0.3673 0.3978 0.093*
H11C 1.2362 0.5087 0.4204 0.093*
C10 0.7575 (3) 0.4261 (3) 0.59574 (8) 0.0578 (7)
H10A 0.7695 0.5023 0.5802 0.087*
H10B 0.8472 0.4248 0.5972 0.087*
H10C 0.7314 0.4433 0.6185 0.087*
C126 0.7558 (3) 0.6936 (4) 0.32010 (9) 0.0718 (10)
H126 0.7545 0.7419 0.3000 0.086*
C127 0.7991 (3) 0.5949 (4) 0.31868 (7) 0.0664 (9)
H127 0.8284 0.5750 0.2975 0.080*
C115 0.6036 (3) −0.1331 (3) 0.45941 (9) 0.0614 (7)
H115 0.6477 −0.1882 0.4640 0.074*
C108 1.0862 (4) 0.7347 (3) 0.53338 (8) 0.0646 (8)
H10D 1.1554 0.8085 0.5181 0.097*
H10E 1.1296 0.6840 0.5441 0.097*
H10F 1.0572 0.7792 0.5511 0.097*
C125 0.7142 (3) 0.7225 (3) 0.35077 (10) 0.0658 (9)
H125 0.6846 0.7915 0.3518 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O4 0.0354 (8) 0.0405 (8) 0.0537 (9) 0.0178 (7) 0.0057 (7) 0.0050 (7)
O101 0.0495 (9) 0.0365 (8) 0.0416 (8) 0.0175 (7) −0.0063 (7) −0.0078 (6)
O103 0.0415 (9) 0.0614 (11) 0.0440 (8) 0.0289 (8) 0.0093 (7) 0.0128 (8)
O2 0.0400 (8) 0.0322 (8) 0.0563 (9) 0.0169 (7) 0.0008 (7) 0.0066 (7)
O1 0.0583 (10) 0.0419 (8) 0.0412 (8) 0.0280 (8) −0.0065 (7) 0.0010 (7)
O3 0.0464 (9) 0.0379 (8) 0.0429 (8) 0.0148 (7) 0.0022 (7) −0.0064 (6)
O102 0.0349 (9) 0.0540 (10) 0.0670 (11) 0.0177 (8) −0.0096 (8) −0.0159 (9)
O104 0.0415 (9) 0.0425 (9) 0.0731 (11) 0.0245 (8) 0.0025 (8) 0.0080 (8)
C9 0.0395 (11) 0.0308 (10) 0.0378 (10) 0.0210 (9) 0.0015 (8) 0.0038 (8)
C123 0.0285 (9) 0.0275 (9) 0.0447 (11) 0.0079 (8) −0.0063 (8) 0.0014 (8)
C29 0.0314 (10) 0.0299 (9) 0.0387 (11) 0.0162 (8) 0.0053 (8) 0.0043 (8)
C7 0.0397 (11) 0.0367 (11) 0.0360 (10) 0.0234 (9) 0.0049 (8) 0.0009 (8)
C4 0.0363 (10) 0.0277 (9) 0.0409 (10) 0.0169 (8) −0.0010 (8) −0.0003 (8)
C3 0.0368 (10) 0.0275 (9) 0.0407 (10) 0.0183 (8) 0.0017 (8) 0.0001 (8)
C23 0.0407 (11) 0.0270 (9) 0.0424 (10) 0.0199 (8) 0.0063 (9) 0.0054 (8)
C109 0.0333 (10) 0.0300 (10) 0.0405 (10) 0.0136 (8) −0.0048 (8) −0.0036 (8)
C101 0.0309 (10) 0.0283 (9) 0.0352 (10) 0.0120 (8) 0.0012 (8) −0.0001 (7)
C104 0.0298 (9) 0.0275 (9) 0.0386 (10) 0.0113 (8) −0.0011 (8) −0.0011 (8)
C105 0.0297 (9) 0.0271 (9) 0.0391 (10) 0.0123 (8) −0.0010 (8) 0.0006 (8)
C107 0.0366 (11) 0.0293 (10) 0.0372 (10) 0.0122 (8) −0.0012 (8) 0.0024 (8)
C5 0.0320 (9) 0.0275 (9) 0.0403 (10) 0.0148 (8) 0.0005 (8) −0.0008 (8)
C106 0.0285 (9) 0.0267 (9) 0.0390 (10) 0.0129 (8) 0.0015 (8) 0.0013 (7)
C102 0.0317 (10) 0.0280 (9) 0.0352 (10) 0.0127 (8) −0.0014 (8) 0.0018 (8)
C2 0.0366 (10) 0.0293 (10) 0.0371 (10) 0.0185 (9) 0.0029 (8) 0.0003 (8)
C6 0.0297 (9) 0.0285 (9) 0.0379 (10) 0.0141 (8) −0.0003 (8) −0.0017 (7)
C129 0.0310 (9) 0.0279 (9) 0.0407 (11) 0.0124 (8) −0.0076 (8) −0.0002 (8)
C11 0.0409 (11) 0.0331 (10) 0.0435 (11) 0.0231 (9) 0.0053 (9) 0.0023 (8)
C21 0.0789 (19) 0.0489 (14) 0.0456 (13) 0.0434 (14) −0.0060 (12) −0.0020 (11)
C34 0.0435 (11) 0.0334 (10) 0.0439 (11) 0.0206 (9) 0.0057 (9) 0.0020 (8)
C18 0.0512 (13) 0.0328 (10) 0.0444 (11) 0.0232 (10) 0.0078 (10) 0.0023 (9)
C103 0.0296 (9) 0.0273 (9) 0.0407 (10) 0.0117 (8) −0.0004 (8) −0.0021 (8)
C111 0.0333 (10) 0.0287 (10) 0.0399 (10) 0.0111 (8) −0.0013 (8) −0.0005 (8)
C30 0.0386 (11) 0.0473 (12) 0.0462 (12) 0.0230 (10) −0.0007 (9) 0.0023 (10)
C134 0.0330 (10) 0.0325 (11) 0.0479 (12) 0.0111 (9) −0.0018 (9) 0.0046 (9)
C1 0.0341 (10) 0.0282 (9) 0.0362 (10) 0.0162 (8) 0.0013 (8) 0.0001 (8)
C17 0.0475 (12) 0.0311 (10) 0.0413 (11) 0.0253 (9) 0.0055 (9) 0.0008 (8)
C24 0.0429 (12) 0.0338 (11) 0.0601 (14) 0.0211 (10) 0.0096 (10) 0.0063 (10)
C22 0.0540 (13) 0.0405 (12) 0.0479 (12) 0.0314 (11) −0.0010 (10) −0.0019 (9)
C12 0.0470 (13) 0.0328 (11) 0.0551 (13) 0.0221 (10) 0.0115 (10) 0.0026 (9)
C133 0.0401 (13) 0.0383 (12) 0.0644 (16) 0.0076 (10) −0.0075 (11) 0.0143 (11)
C117 0.0306 (10) 0.0291 (9) 0.0405 (10) 0.0065 (8) −0.0004 (8) 0.0038 (8)
C16 0.0426 (12) 0.0359 (11) 0.0693 (16) 0.0228 (10) 0.0041 (11) 0.0035 (11)
C112 0.0350 (10) 0.0323 (11) 0.0439 (11) 0.0132 (9) −0.0009 (9) 0.0015 (9)
C130 0.0483 (13) 0.0372 (11) 0.0466 (12) 0.0240 (10) −0.0086 (10) −0.0053 (9)
C28 0.0597 (15) 0.0412 (12) 0.0442 (12) 0.0284 (11) 0.0031 (11) 0.0043 (10)
C124 0.0358 (11) 0.0352 (11) 0.0671 (15) 0.0149 (10) −0.0128 (10) 0.0014 (10)
C113 0.0353 (11) 0.0368 (12) 0.0510 (13) 0.0072 (9) −0.0015 (10) 0.0045 (10)
C119 0.0336 (11) 0.0499 (14) 0.0525 (13) 0.0083 (10) −0.0045 (10) 0.0143 (11)
C19 0.0654 (16) 0.0325 (11) 0.0494 (13) 0.0240 (11) 0.0166 (11) 0.0035 (9)
C131 0.0707 (18) 0.0381 (12) 0.0644 (16) 0.0325 (13) −0.0281 (14) −0.0136 (11)
C15 0.0479 (14) 0.0536 (15) 0.0787 (18) 0.0331 (13) 0.0109 (13) 0.0082 (13)
C118 0.0325 (10) 0.0364 (11) 0.0482 (12) 0.0100 (9) −0.0028 (9) 0.0057 (9)
C120 0.0425 (13) 0.0533 (15) 0.0414 (12) 0.0010 (11) −0.0077 (10) 0.0037 (11)
C31 0.0486 (14) 0.0681 (17) 0.0632 (16) 0.0395 (13) 0.0062 (12) 0.0192 (14)
C114 0.0485 (14) 0.0295 (11) 0.0682 (16) 0.0079 (10) −0.0093 (12) 0.0084 (10)
C116 0.0372 (12) 0.0345 (12) 0.0738 (17) 0.0150 (10) −0.0039 (11) 0.0053 (11)
C25 0.0582 (16) 0.0410 (13) 0.093 (2) 0.0279 (12) 0.0374 (16) 0.0202 (14)
C27 0.099 (2) 0.0475 (14) 0.0420 (13) 0.0394 (16) 0.0096 (14) 0.0059 (11)
C121 0.0499 (14) 0.0384 (12) 0.0451 (12) 0.0032 (11) 0.0017 (11) −0.0038 (10)
C8 0.079 (2) 0.0536 (15) 0.0515 (14) 0.0394 (15) −0.0100 (13) 0.0079 (11)
C122 0.0402 (12) 0.0330 (11) 0.0464 (12) 0.0093 (9) −0.0002 (9) −0.0011 (9)
C128 0.0423 (12) 0.0469 (13) 0.0429 (12) 0.0136 (11) −0.0050 (9) −0.0004 (10)
C13 0.0634 (16) 0.0358 (12) 0.0622 (15) 0.0314 (12) 0.0172 (12) 0.0056 (11)
C20 0.090 (2) 0.0389 (12) 0.0417 (12) 0.0383 (14) 0.0087 (12) 0.0054 (10)
C132 0.0591 (16) 0.0268 (11) 0.0795 (19) 0.0111 (11) −0.0274 (14) 0.0048 (12)
C26 0.102 (3) 0.0474 (15) 0.0592 (17) 0.0412 (16) 0.0416 (18) 0.0158 (13)
C14 0.0666 (17) 0.0505 (14) 0.0664 (16) 0.0446 (14) 0.0177 (13) 0.0105 (12)
C33 0.0654 (16) 0.0380 (12) 0.0602 (15) 0.0322 (12) 0.0197 (13) 0.0059 (11)
C32 0.0607 (16) 0.0552 (15) 0.0737 (17) 0.0447 (14) 0.0236 (14) 0.0229 (13)
C110 0.0464 (14) 0.082 (2) 0.0612 (16) 0.0350 (14) 0.0173 (12) 0.0150 (14)
C10 0.0629 (17) 0.0386 (12) 0.0589 (15) 0.0156 (12) −0.0056 (12) −0.0118 (11)
C126 0.0500 (16) 0.0654 (19) 0.0699 (19) 0.0064 (14) −0.0224 (14) 0.0262 (15)
C127 0.0517 (15) 0.074 (2) 0.0434 (13) 0.0089 (15) −0.0114 (11) 0.0078 (13)
C115 0.0510 (15) 0.0342 (12) 0.096 (2) 0.0194 (11) −0.0111 (14) 0.0103 (13)
C108 0.0704 (19) 0.0515 (15) 0.0595 (16) 0.0213 (15) −0.0239 (14) −0.0203 (13)
C125 0.0434 (14) 0.0411 (14) 0.103 (3) 0.0135 (12) −0.0251 (15) 0.0133 (14)

Geometric parameters (Å, º)

O4—C9 1.203 (3) C133—H133 0.9500
O101—C107 1.340 (3) C133—C132 1.368 (5)
O101—C108 1.443 (3) C117—C118 1.395 (3)
O103—C109 1.327 (3) C117—C122 1.400 (3)
O103—C110 1.442 (3) C16—H16 0.9500
O2—C7 1.204 (3) C16—C15 1.389 (4)
O1—C7 1.331 (3) C112—H112 0.9500
O1—C8 1.446 (3) C112—C113 1.385 (3)
O3—C9 1.329 (3) C130—H130 0.9500
O3—C10 1.451 (3) C130—C131 1.396 (4)
O102—C107 1.196 (3) C28—H28 0.9500
O104—C109 1.206 (3) C28—C27 1.382 (4)
C9—C2 1.537 (3) C124—H124 0.9500
C123—C105 1.493 (3) C124—C125 1.388 (4)
C123—C124 1.395 (3) C113—H113 0.9500
C123—C128 1.383 (3) C113—C114 1.380 (4)
C29—C6 1.489 (3) C119—H119 0.9500
C29—C34 1.390 (3) C119—C118 1.389 (3)
C29—C30 1.396 (3) C119—C120 1.384 (5)
C7—C1 1.524 (3) C19—H19 0.9500
C4—C3 1.349 (3) C19—C20 1.381 (4)
C4—C5 1.491 (3) C131—H131 0.9500
C4—C17 1.496 (3) C131—C132 1.381 (5)
C3—C2 1.529 (3) C15—H15 0.9500
C3—C11 1.492 (3) C15—C14 1.388 (4)
C23—C5 1.494 (3) C118—H118 0.9500
C23—C24 1.390 (3) C120—H120 0.9500
C23—C28 1.393 (3) C120—C121 1.376 (4)
C109—C102 1.529 (3) C31—H31 0.9500
C101—H101 0.99 (3) C31—C32 1.375 (5)
C101—C107 1.514 (3) C114—H114 0.9500
C101—C106 1.527 (3) C114—C115 1.381 (4)
C101—C102 1.536 (3) C116—H116 0.9500
C104—C105 1.493 (3) C116—C115 1.390 (4)
C104—C103 1.356 (3) C25—H25 0.9500
C104—C117 1.497 (3) C25—C26 1.378 (5)
C105—C106 1.346 (3) C27—H27 0.9500
C5—C6 1.348 (3) C27—C26 1.374 (5)
C106—C129 1.490 (3) C121—H121 0.9500
C102—H102 0.96 (3) C121—C122 1.386 (4)
C102—C103 1.533 (3) C8—H8A 0.9800
C2—H2 0.98 (3) C8—H8B 0.9800
C2—C1 1.539 (3) C8—H8C 0.9800
C6—C1 1.530 (3) C122—H122 0.9500
C129—C134 1.391 (3) C128—H128 0.9500
C129—C130 1.392 (3) C128—C127 1.394 (4)
C11—C12 1.394 (3) C13—H13 0.9500
C11—C16 1.393 (3) C13—C14 1.376 (4)
C21—H21 0.9500 C20—H20 0.9500
C21—C22 1.391 (4) C132—H132 0.9500
C21—C20 1.383 (4) C26—H26 0.9500
C34—H34 0.9500 C14—H14 0.9500
C34—C33 1.388 (3) C33—H33 0.9500
C18—H18 0.9500 C33—C32 1.376 (4)
C18—C17 1.397 (3) C32—H32 0.9500
C18—C19 1.391 (3) C110—H11A 0.9800
C103—C111 1.489 (3) C110—H11B 0.9800
C111—C112 1.398 (3) C110—H11C 0.9800
C111—C116 1.396 (3) C10—H10A 0.9800
C30—H30 0.9500 C10—H10B 0.9800
C30—C31 1.393 (4) C10—H10C 0.9800
C134—H134 0.9500 C126—H126 0.9500
C134—C133 1.392 (3) C126—C127 1.368 (6)
C1—H1 0.98 (3) C126—C125 1.373 (6)
C17—C22 1.392 (3) C127—H127 0.9500
C24—H24 0.9500 C115—H115 0.9500
C24—C25 1.389 (4) C108—H10D 0.9800
C22—H22 0.9500 C108—H10E 0.9800
C12—H12 0.9500 C108—H10F 0.9800
C12—C13 1.392 (3) C125—H125 0.9500
C107—O101—C108 115.4 (2) C15—C16—C11 120.6 (2)
C109—O103—C110 115.50 (19) C15—C16—H16 119.7
C7—O1—C8 115.0 (2) C111—C112—H112 119.5
C9—O3—C10 114.9 (2) C113—C112—C111 120.9 (2)
O4—C9—O3 124.1 (2) C113—C112—H112 119.5
O4—C9—C2 123.3 (2) C129—C130—H130 119.9
O3—C9—C2 112.58 (18) C129—C130—C131 120.2 (2)
C124—C123—C105 121.3 (2) C131—C130—H130 119.9
C128—C123—C105 120.1 (2) C23—C28—H28 119.5
C128—C123—C124 118.6 (2) C27—C28—C23 120.9 (3)
C34—C29—C6 120.32 (19) C27—C28—H28 119.5
C34—C29—C30 118.8 (2) C123—C124—H124 120.0
C30—C29—C6 120.9 (2) C125—C124—C123 120.0 (3)
O2—C7—O1 123.8 (2) C125—C124—H124 120.0
O2—C7—C1 124.2 (2) C112—C113—H113 119.7
O1—C7—C1 112.05 (18) C114—C113—C112 120.6 (2)
C3—C4—C5 120.32 (19) C114—C113—H113 119.7
C3—C4—C17 122.02 (19) C118—C119—H119 119.9
C5—C4—C17 117.58 (18) C120—C119—H119 119.9
C4—C3—C2 119.78 (18) C120—C119—C118 120.1 (3)
C4—C3—C11 124.55 (19) C18—C19—H19 120.0
C11—C3—C2 115.66 (18) C20—C19—C18 120.0 (3)
C24—C23—C5 122.0 (2) C20—C19—H19 120.0
C24—C23—C28 118.4 (2) C130—C131—H131 120.0
C28—C23—C5 119.6 (2) C132—C131—C130 120.0 (3)
O103—C109—C102 112.96 (17) C132—C131—H131 120.0
O104—C109—O103 123.5 (2) C16—C15—H15 119.8
O104—C109—C102 123.5 (2) C14—C15—C16 120.4 (3)
C107—C101—H101 106.2 (15) C14—C15—H15 119.8
C107—C101—C106 112.23 (17) C117—C118—H118 119.6
C107—C101—C102 110.49 (17) C119—C118—C117 120.8 (2)
C106—C101—H101 109.1 (15) C119—C118—H118 119.6
C106—C101—C102 111.29 (17) C119—C120—H120 120.2
C102—C101—H101 107.2 (16) C121—C120—C119 119.7 (2)
C105—C104—C117 117.26 (18) C121—C120—H120 120.2
C103—C104—C105 120.32 (18) C30—C31—H31 120.0
C103—C104—C117 122.36 (19) C32—C31—C30 120.0 (3)
C104—C105—C123 118.82 (18) C32—C31—H31 120.0
C106—C105—C123 120.74 (18) C113—C114—H114 120.4
C106—C105—C104 120.42 (18) C113—C114—C115 119.2 (2)
O101—C107—C101 110.97 (18) C115—C114—H114 120.4
O102—C107—O101 123.7 (2) C111—C116—H116 119.8
O102—C107—C101 125.4 (2) C115—C116—C111 120.5 (2)
C4—C5—C23 118.71 (18) C115—C116—H116 119.8
C6—C5—C4 120.79 (19) C24—C25—H25 119.7
C6—C5—C23 120.48 (18) C26—C25—C24 120.6 (3)
C105—C106—C101 118.93 (18) C26—C25—H25 119.7
C105—C106—C129 121.73 (18) C28—C27—H27 119.9
C129—C106—C101 119.31 (17) C26—C27—C28 120.3 (3)
C109—C102—C101 114.49 (17) C26—C27—H27 119.9
C109—C102—H102 103.6 (16) C120—C121—H121 119.6
C109—C102—C103 111.72 (17) C120—C121—C122 120.7 (3)
C101—C102—H102 108.5 (16) C122—C121—H121 119.6
C103—C102—C101 109.15 (17) O1—C8—H8A 109.5
C103—C102—H102 109.1 (16) O1—C8—H8B 109.5
C9—C2—H2 103.9 (16) O1—C8—H8C 109.5
C9—C2—C1 113.86 (16) H8A—C8—H8B 109.5
C3—C2—C9 111.29 (17) H8A—C8—H8C 109.5
C3—C2—H2 108.7 (16) H8B—C8—H8C 109.5
C3—C2—C1 109.97 (17) C117—C122—H122 119.8
C1—C2—H2 108.8 (16) C121—C122—C117 120.4 (2)
C29—C6—C1 118.19 (17) C121—C122—H122 119.8
C5—C6—C29 122.85 (18) C123—C128—H128 119.7
C5—C6—C1 118.93 (18) C123—C128—C127 120.6 (3)
C134—C129—C106 119.5 (2) C127—C128—H128 119.7
C134—C129—C130 118.7 (2) C12—C13—H13 119.9
C130—C129—C106 121.7 (2) C14—C13—C12 120.3 (2)
C12—C11—C3 120.1 (2) C14—C13—H13 119.9
C16—C11—C3 121.59 (19) C21—C20—H20 120.0
C16—C11—C12 118.3 (2) C19—C20—C21 120.0 (2)
C22—C21—H21 120.0 C19—C20—H20 120.0
C20—C21—H21 120.0 C133—C132—C131 120.2 (2)
C20—C21—C22 120.0 (3) C133—C132—H132 119.9
C29—C34—H34 119.9 C131—C132—H132 119.9
C33—C34—C29 120.2 (2) C25—C26—H26 120.2
C33—C34—H34 119.9 C27—C26—C25 119.6 (2)
C17—C18—H18 119.6 C27—C26—H26 120.2
C19—C18—H18 119.6 C15—C14—H14 120.3
C19—C18—C17 120.8 (2) C13—C14—C15 119.5 (2)
C104—C103—C102 119.08 (18) C13—C14—H14 120.3
C104—C103—C111 124.94 (19) C34—C33—H33 119.7
C111—C103—C102 115.87 (18) C32—C33—C34 120.6 (2)
C112—C111—C103 120.8 (2) C32—C33—H33 119.7
C116—C111—C103 120.99 (19) C31—C32—C33 120.0 (2)
C116—C111—C112 118.0 (2) C31—C32—H32 120.0
C29—C30—H30 119.8 C33—C32—H32 120.0
C31—C30—C29 120.4 (2) O103—C110—H11A 109.5
C31—C30—H30 119.8 O103—C110—H11B 109.5
C129—C134—H134 119.8 O103—C110—H11C 109.5
C129—C134—C133 120.5 (2) H11A—C110—H11B 109.5
C133—C134—H134 119.8 H11A—C110—H11C 109.5
C7—C1—C2 110.82 (17) H11B—C110—H11C 109.5
C7—C1—C6 110.29 (16) O3—C10—H10A 109.5
C7—C1—H1 107.3 (16) O3—C10—H10B 109.5
C2—C1—H1 107.5 (16) O3—C10—H10C 109.5
C6—C1—C2 111.88 (17) H10A—C10—H10B 109.5
C6—C1—H1 108.9 (16) H10A—C10—H10C 109.5
C18—C17—C4 121.7 (2) H10B—C10—H10C 109.5
C22—C17—C4 119.9 (2) C127—C126—H126 120.2
C22—C17—C18 118.3 (2) C127—C126—C125 119.6 (3)
C23—C24—H24 119.9 C125—C126—H126 120.2
C25—C24—C23 120.2 (3) C128—C127—H127 119.8
C25—C24—H24 119.9 C126—C127—C128 120.4 (3)
C21—C22—C17 120.8 (3) C126—C127—H127 119.8
C21—C22—H22 119.6 C114—C115—C116 120.8 (2)
C17—C22—H22 119.6 C114—C115—H115 119.6
C11—C12—H12 119.6 C116—C115—H115 119.6
C13—C12—C11 120.9 (2) O101—C108—H10D 109.5
C13—C12—H12 119.6 O101—C108—H10E 109.5
C134—C133—H133 119.9 O101—C108—H10F 109.5
C132—C133—C134 120.3 (3) H10D—C108—H10E 109.5
C132—C133—H133 119.9 H10D—C108—H10F 109.5
C118—C117—C104 121.9 (2) H10E—C108—H10F 109.5
C118—C117—C122 118.2 (2) C124—C125—H125 119.6
C122—C117—C104 119.8 (2) C126—C125—C124 120.8 (3)
C11—C16—H16 119.7 C126—C125—H125 119.6
O4—C9—C2—C3 112.9 (2) C102—C103—C111—C116 −42.2 (3)
O4—C9—C2—C1 −122.1 (2) C2—C3—C11—C12 −129.8 (2)
O103—C109—C102—C101 −52.7 (2) C2—C3—C11—C16 47.6 (3)
O103—C109—C102—C103 72.0 (2) C6—C29—C34—C33 −179.7 (2)
O2—C7—C1—C2 −44.6 (3) C6—C29—C30—C31 179.8 (2)
O2—C7—C1—C6 79.8 (3) C129—C134—C133—C132 0.0 (4)
O1—C7—C1—C2 136.50 (18) C129—C130—C131—C132 −1.1 (4)
O1—C7—C1—C6 −99.1 (2) C11—C3—C2—C9 −89.4 (2)
O3—C9—C2—C3 −64.5 (2) C11—C3—C2—C1 143.46 (19)
O3—C9—C2—C1 60.5 (2) C11—C12—C13—C14 −0.3 (4)
O104—C109—C102—C101 129.4 (2) C11—C16—C15—C14 0.5 (4)
O104—C109—C102—C103 −105.9 (2) C34—C29—C6—C5 59.7 (3)
C9—C2—C1—C7 46.1 (2) C34—C29—C6—C1 −118.4 (2)
C9—C2—C1—C6 −77.4 (2) C34—C29—C30—C31 −1.3 (3)
C123—C105—C106—C101 −179.44 (18) C34—C33—C32—C31 −1.0 (4)
C123—C105—C106—C129 −1.4 (3) C18—C17—C22—C21 0.2 (3)
C123—C124—C125—C126 0.6 (4) C18—C19—C20—C21 0.1 (4)
C123—C128—C127—C126 −0.5 (4) C103—C104—C105—C123 163.0 (2)
C29—C6—C1—C7 21.4 (3) C103—C104—C105—C106 −15.3 (3)
C29—C6—C1—C2 145.28 (18) C103—C104—C117—C118 132.3 (2)
C29—C34—C33—C32 −0.2 (4) C103—C104—C117—C122 −51.8 (3)
C29—C30—C31—C32 0.2 (4) C103—C111—C112—C113 −174.8 (2)
C4—C3—C2—C9 91.4 (2) C103—C111—C116—C115 175.3 (3)
C4—C3—C2—C1 −35.7 (3) C111—C112—C113—C114 0.3 (4)
C4—C3—C11—C12 49.4 (3) C111—C116—C115—C114 −1.2 (5)
C4—C3—C11—C16 −133.2 (3) C30—C29—C6—C5 −121.4 (2)
C4—C5—C6—C29 −177.45 (19) C30—C29—C6—C1 60.5 (3)
C4—C5—C6—C1 0.7 (3) C30—C29—C34—C33 1.4 (3)
C4—C17—C22—C21 176.8 (2) C30—C31—C32—C33 1.0 (4)
C3—C4—C5—C23 −163.1 (2) C134—C129—C130—C131 1.7 (3)
C3—C4—C5—C6 15.2 (3) C134—C133—C132—C131 0.6 (4)
C3—C4—C17—C18 −132.3 (2) C17—C4—C3—C2 −172.26 (19)
C3—C4—C17—C22 51.2 (3) C17—C4—C3—C11 8.6 (3)
C3—C2—C1—C7 171.79 (17) C17—C4—C5—C23 13.6 (3)
C3—C2—C1—C6 48.2 (2) C17—C4—C5—C6 −168.1 (2)
C3—C11—C12—C13 178.3 (2) C17—C18—C19—C20 0.4 (3)
C3—C11—C16—C15 −178.3 (2) C24—C23—C5—C4 −122.2 (2)
C23—C5—C6—C29 0.8 (3) C24—C23—C5—C6 59.5 (3)
C23—C5—C6—C1 178.93 (18) C24—C23—C28—C27 −0.3 (3)
C23—C24—C25—C26 −0.9 (4) C24—C25—C26—C27 0.5 (4)
C23—C28—C27—C26 −0.1 (4) C22—C21—C20—C19 −0.5 (4)
C109—C102—C103—C104 −89.5 (2) C12—C11—C16—C15 −0.9 (4)
C109—C102—C103—C111 94.1 (2) C12—C13—C14—C15 −0.1 (4)
C101—C106—C129—C134 115.8 (2) C117—C104—C105—C123 −14.3 (3)
C101—C106—C129—C130 −64.9 (3) C117—C104—C105—C106 167.5 (2)
C101—C102—C103—C104 38.2 (3) C117—C104—C103—C102 171.84 (19)
C101—C102—C103—C111 −138.24 (19) C117—C104—C103—C111 −12.1 (3)
C104—C105—C106—C101 −1.3 (3) C16—C11—C12—C13 0.8 (4)
C104—C105—C106—C129 176.77 (18) C16—C15—C14—C13 0.1 (4)
C104—C103—C111—C112 −43.7 (3) C112—C111—C116—C115 0.5 (4)
C104—C103—C111—C116 141.7 (2) C112—C113—C114—C115 −1.0 (4)
C104—C117—C118—C119 176.6 (2) C130—C129—C134—C133 −1.2 (3)
C104—C117—C122—C121 −175.8 (2) C130—C131—C132—C133 −0.1 (4)
C105—C123—C124—C125 177.7 (2) C28—C23—C5—C4 58.8 (3)
C105—C123—C128—C127 −177.8 (2) C28—C23—C5—C6 −119.5 (2)
C105—C104—C103—C102 −5.2 (3) C28—C23—C24—C25 0.8 (3)
C105—C104—C103—C111 170.81 (19) C28—C27—C26—C25 0.0 (4)
C105—C104—C117—C118 −50.5 (3) C124—C123—C105—C104 122.2 (2)
C105—C104—C117—C122 125.3 (2) C124—C123—C105—C106 −59.6 (3)
C105—C106—C129—C134 −62.2 (3) C124—C123—C128—C127 0.7 (3)
C105—C106—C129—C130 117.1 (2) C113—C114—C115—C116 1.4 (5)
C107—C101—C106—C105 159.64 (19) C119—C120—C121—C122 0.2 (4)
C107—C101—C106—C129 −18.4 (3) C19—C18—C17—C4 −177.1 (2)
C107—C101—C102—C109 −50.6 (2) C19—C18—C17—C22 −0.6 (3)
C107—C101—C102—C103 −176.70 (17) C118—C117—C122—C121 0.2 (3)
C5—C4—C3—C2 4.3 (3) C118—C119—C120—C121 0.7 (4)
C5—C4—C3—C11 −174.8 (2) C120—C119—C118—C117 −1.2 (4)
C5—C4—C17—C18 51.0 (3) C120—C121—C122—C117 −0.6 (4)
C5—C4—C17—C22 −125.4 (2) C116—C111—C112—C113 −0.1 (3)
C5—C23—C24—C25 −178.2 (2) C8—O1—C7—O2 −7.3 (3)
C5—C23—C28—C27 178.7 (2) C8—O1—C7—C1 171.6 (2)
C5—C6—C1—C7 −156.78 (19) C122—C117—C118—C119 0.7 (3)
C5—C6—C1—C2 −32.9 (3) C128—C123—C105—C104 −59.4 (3)
C106—C101—C107—O101 91.5 (2) C128—C123—C105—C106 118.9 (2)
C106—C101—C107—O102 −87.5 (3) C128—C123—C124—C125 −0.7 (3)
C106—C101—C102—C109 74.7 (2) C20—C21—C22—C17 0.4 (4)
C106—C101—C102—C103 −51.3 (2) C110—O103—C109—O104 −7.8 (3)
C106—C129—C134—C133 178.2 (2) C110—O103—C109—C102 174.3 (2)
C106—C129—C130—C131 −177.7 (2) C10—O3—C9—O4 9.6 (3)
C102—C101—C107—O101 −143.65 (18) C10—O3—C9—C2 −173.1 (2)
C102—C101—C107—O102 37.3 (3) C127—C126—C125—C124 −0.4 (4)
C102—C101—C106—C105 35.2 (3) C108—O101—C107—O102 5.3 (3)
C102—C101—C106—C129 −142.85 (18) C108—O101—C107—C101 −173.7 (2)
C102—C103—C111—C112 132.4 (2) C125—C126—C127—C128 0.3 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C101—H101···O2 0.99 (3) 2.39 (3) 3.384 (3) 176 (2)
C102—H102···O4 0.96 (3) 2.48 (3) 3.242 (3) 136 (2)
C16—H16···O4 0.95 2.59 3.407 (3) 145
C116—H116···O104 0.95 2.54 3.388 (3) 148

References

  1. Allen, C. F. H. (1945). Chem. Rev. 37, 209–268. [DOI] [PubMed]
  2. Allen, C. F. H. (1962). Chem. Rev. 62, 653–664.
  3. Allen, C. F. H. & Sheps, L. J. (1934). Can. J. Res. 11, 171–179.
  4. Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.
  5. Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. De Maré, G. R., Panchenko, Y. N. & Vander Auwera, J. (1997). J. Phys. Chem. A, 101, 3998–4004.
  8. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.
  9. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  10. Fuchs, B. & Yankelevich, S. (1968). Isr. J. Chem. 6, 511–515.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Pal, R., Mukherjee, S., Chandrasekhar, S. & Guru Row, T. N. (2014). J. Phys. Chem. A, 118, 3479–3489. [DOI] [PubMed]
  13. Rabideau, P. W. & Sygula, A. (1989). The conformational analysis of cyclohexenes, cyclohexadienes and related hydroaromatic compounds, edited by P. W. Rabideau, pp. 67–53. New York: VCH.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  16. Takahashi, T., Xi, Z., Yamazaki, A., Liu, Y., Nakajima, K. & Kotora, M. (1998). J. Am. Chem. Soc. 120, 1672–1680.
  17. Traetteberg, M. (1968). Acta Chem. Scand. 22, 2305–2312.
  18. Wang, X., Eckert, J., Liu, L. & Jacobson, A. J. (2011). Inorg. Chem. 50, 2028–2036. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016009403/zl2665sup1.cif

e-72-00947-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016009403/zl2665Isup2.hkl

e-72-00947-Isup2.hkl (854.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016009403/zl2665Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989016009403/zl2665Isup4.cml

CCDC reference: 1484412

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES