Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jun 14;72(Pt 7):951–954. doi: 10.1107/S2056989016008999

Crystal structure of ethyl 4-[(E)-(4-hy­droxy-3-meth­oxy­benzyl­idene)amino]­benzoate: a p-hy­droxy Schiff base

Jing Ling a, Padmini Kavuru a, Lukasz Wojtas b, Keith Chadwick a,*
PMCID: PMC4992913  PMID: 27555938

The title p-hy­droxy Schiff base, is the product of a condensation reaction between benzocaine and vanillin. The benzyl­idine and benzoate rings are inclined to one another by 24.58 (8)°, and the conformation about the C=N bond is E.

Keywords: crystal structure, p-hy­droxy Schiff base, hydrogen bonding

Abstract

The title p-hy­droxy Schiff base, C17H17NO4, was synthesized via the condensation reaction of benzocaine with vanillin. The benzyl­idine and benzoate rings are inclined to one another by 24.58 (8)°, and the conformation about the C=N bond is E. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming zigzag chains propagating along [010]. Adjacent chains are linked by C—H⋯π and weak offset π–π inter­actions [inter­centroid distance = 3.819 (1) Å], forming sheets parallel to (10-2).

Chemical context  

The pharmaceutical industry generally seeks to formulate crystalline forms of their active ingredient by their inherent stability (Yadav et al., 2009; Paul et al., 2005). Increasing attention is now being paid to crystal engineering for improving crystal properties (Byrn et al., 1999). One such strategy is co-crystallization due to its potential for enhancing the physicochemical properties of an API, such as solubility, bioavailability, dissolution, and chemical and physical stability (Shan & Zaworotko, 2008; Good & Rodríguez-Hornedo, 2009). The term co-crystal does not have a clear and consistent definition in the literature (Desiraju, 2003; Bond, 2007; Shan & Zaworotko, 2008). Generally, a co-crystal is defined as a homogeneous crystalline phase consisting of two or more discrete chemical entities bound together in the crystal lattice through non-covalent, non-ionic mol­ecular inter­actions.graphic file with name e-72-00951-scheme1.jpg

Benzocaine, the ethyl ester of p-amino­benzoic acid, is a local anaesthetic which is used to subside pain perception. It relieves pain by inhibiting the voltage-dependent sodium channels on the nerve membrane, which results in stopping the propagation of the action potential. (Neumcke et al., 1981). In this study, we intended to formulate co-crystals of benzocaine and determine the impact on its physicochemical properties. Vanillin was selected as a potential co-former as it is FDA approved and has the potential to form a strong hydrogen bond between the amine and hy­droxy groups of benzocaine and vanillin, respectively. However, during crystallization a chemical reaction between the two was observed, the product of which is a novel p-hy­droxy Schiff base. Schiff bases are an important class of organic compounds with significant bio­logical and chemical importance. In general, they are synthesized by the condensation reaction of an aliphatic or aromatic amine with a carbonyl containing compound, such as an aldehyde, via nucleophilic addition. Herein, we report on the crystal structure of the title compound, a new p-hy­droxy Schiff base, synthesized from benzocaine and vanillin by slurry crystallization.

Structural commentary  

The title Schiff base, (I), is the product of the reaction of benzocaine with vanillin (Scheme). In the title compound, Fig. 1, the conformation of the C10=N1 imine bond is E. The mol­ecule is non-planar, with a dihedral angle between the aryl rings of 24.58 (8)°. The m-meth­oxy group (O1/C13/C16) is slightly out of the plane of the benzene ring (C11–C14/C20/C21) to which it is attached by 5.37 (18)°, while the mean plane of the ethyl­acetate group (O3/O17/C1/C2/C4) is inclined to the benzene ring (C5–C8/C18/C19) to which it is attached by 10.23 (11)°. This non-linearity is consistent for Schiff bases.

Figure 1.

Figure 1

The mol­ecular structure of compound (I), with atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming zigzag chains propagating along [010]; see Table 1 and Fig. 2. Adjacent chains are linked by C—H⋯π inter­actions (Table 1, Fig. 2), and weak offset π-π- inter­actions, forming sheets parallel to (10Inline graphic) [Cg1⋯Cg1i = 3.819 (1) Å, inter­planar distance = 3.672 (2) Å, slippage = 1.05 Å, Cg1 is the centroid of ring C5–C8/C18/C19; symmetry code: (i) −x + 2, −y + 1, −z + 1],

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C11–C14/C20/C21 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O15—H15⋯N1i 0.88 (2) 2.00 (2) 2.828 (2) 156 (2)
C2—H2BCg2ii 0.97 2.87 3.766 (2) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view along the c axis of the crystal packing of compound (I), with hydrogen bonds shown as dashed lines and C—H⋯π inter­actions as blue arrows (see Table 1).

The crystal structure analysis of compound (I), has shown that, due to the aromatic hy­droxy group being located in the para rather than the ortho position, this Schiff base cannot form the intra­molecular C=N⋯O—H hydrogen bond responsible for keto–enol tautomerism. However, the close proximity of the C=N and O—H groups gives rise to the possibility that external stimulation of the material by heat or light may lead to the zwitterionic form. The potential for compound (I) to form a zwitterionic state, coupled with the non-linear conformation of the mol­ecule in the solid state, suggest that this Schiff base may exhibit inter­esting physical properties, that we are currently in the process of evaluating.

Database survey  

In the Cambridge Structural Database (CSD, V53.7; Groom et al., 2016), there are three known Schiff bases synthesized from benzocaine (CSD ref codes: VABSUO; Shakir et al., 2010, and ZOZROV and ZOZRUB; Kurogoshi & Hori, 1996), and one derived from vanillin (CSD ref code: LEFVID; Fejfarová et al., 2012). The dihedral angles between the aryl rings in VABSUO, ZOZROV, ZOZRUB and LEFVID were found to be 24.85 (9), 59.7 (2), 53.94 (9), and 37.87 (10)°, respectively. The N1=C10 and C8—N1 bond lengths of the imine group of the title compound are 1.274 (2) and 1.415 (2) Å, respectively. They are comparable to the imine bond lengths observed for VABSUO, ZOZROV, ZOZRUB and LEFVID, which vary between 1.262 (4)–1.283 (3) Å and 1.414 (7)–1.428 (3) Å, respectively.

Synthesis and crystallization  

Compound (I) was prepared by slurrying an equimolar mixture of benzocaine (1.16 g, 7 mmol) and vanillin (1.07 g, 7 mmol) in 2 ml of anhydrous ethanol (see Scheme). The slurry was stirred continuously for 18 h at room temperature (296 K). The product was then filtered and air dried before being analysed by powder X-ray diffraction to determine the presence of a new crystalline phase. Single crystals were then prepared by dissolving an equimolar mixture of benzocaine (0.83 g, 5 mmol) and vanillin (0.77 g, 5 mmol) in 10 ml of ethanol. The solution was allowed to evaporate under ambient conditions and yellow block-like crystals were obtained after four days.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Two H atoms, H15 and H10, were located in a difference Fourier map and freely refined. The remaining H atoms were placed in geometrically calculated positions and included in the refinement process using a riding model: C—H = 0.93–0.97 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C17H17NO4
M r 299.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 12.4229 (5), 9.6392 (5), 13.2384 (6)
β (°) 102.457 (3)
V3) 1547.94 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.76
Crystal size (mm) 0.26 × 0.11 × 0.04
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.599, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 18263, 2895, 2277
R int 0.037
(sin θ/λ)max−1) 0.614
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.121, 1.05
No. of reflections 2895
No. of parameters 210
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.14

Computer programs: APEX2, SAINT (Bruker, 2013) and XPREP (Sheldrick,2008), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989016008999/su5304sup1.cif

e-72-00951-sup1.cif (559.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016008999/su5304Isup2.hkl

e-72-00951-Isup2.hkl (231.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016008999/su5304sup3.pdf

e-72-00951-sup3.pdf (215.5KB, pdf)

Supporting information file. DOI: 10.1107/S2056989016008999/su5304Isup4.cml

CCDC reference: 1483394

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C17H17NO4 F(000) = 632
Mr = 299.31 Dx = 1.284 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 12.4229 (5) Å Cell parameters from 3549 reflections
b = 9.6392 (5) Å θ = 11.5–68.2°
c = 13.2384 (6) Å µ = 0.76 mm1
β = 102.457 (3)° T = 296 K
V = 1547.94 (12) Å3 Block, colorless
Z = 4 0.26 × 0.11 × 0.04 mm

Data collection

Bruker SMART APEXII CCD diffractometer 2277 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.037
ω scans θmax = 71.1°, θmin = 3.6°
Absorption correction: multi-scan (SADABS; Bruker, 2013) h = −15→15
Tmin = 0.599, Tmax = 0.753 k = −11→11
18263 measured reflections l = −15→16
2895 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.1332P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 0.23 e Å3
2895 reflections Δρmin = −0.14 e Å3
210 parameters Extinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0018 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.40310 (9) 0.79734 (13) 0.24104 (8) 0.0566 (3)
C1 1.3086 (2) −0.0296 (3) 0.5552 (2) 0.1030 (8)
H1A 1.2688 −0.0661 0.4904 0.155*
H1B 1.3627 −0.0959 0.5878 0.155*
H1C 1.3447 0.0551 0.5433 0.155*
C2 1.23138 (15) −0.00168 (18) 0.62283 (15) 0.0675 (5)
H2A 1.1963 −0.0870 0.6375 0.081*
H2B 1.2702 0.0384 0.6877 0.081*
O3 1.14975 (10) 0.09453 (12) 0.56841 (10) 0.0647 (3)
C4 1.07204 (13) 0.13648 (19) 0.61646 (13) 0.0577 (4)
C5 0.99507 (12) 0.23783 (16) 0.55419 (12) 0.0512 (4)
C6 0.92059 (14) 0.3074 (2) 0.60045 (14) 0.0636 (5)
H6 0.9217 0.2925 0.6701 0.076*
C7 0.84532 (14) 0.3980 (2) 0.54458 (14) 0.0609 (4)
H7 0.7960 0.4438 0.5767 0.073*
C8 0.84222 (11) 0.42174 (15) 0.44046 (12) 0.0461 (3)
N1 0.75716 (9) 0.50849 (13) 0.38633 (9) 0.0464 (3)
C10 0.77038 (12) 0.57994 (15) 0.30896 (12) 0.0472 (3)
C11 0.68431 (12) 0.66679 (15) 0.24840 (11) 0.0442 (3)
C12 0.58421 (12) 0.68797 (15) 0.27877 (11) 0.0449 (3)
H12 0.5723 0.6466 0.3389 0.054*
C13 0.50380 (11) 0.76950 (14) 0.22013 (11) 0.0416 (3)
C14 0.52011 (11) 0.83080 (14) 0.12814 (10) 0.0419 (3)
O15 0.44049 (9) 0.90702 (12) 0.06788 (8) 0.0514 (3)
C16 0.38242 (16) 0.7484 (3) 0.33611 (15) 0.0777 (6)
H16A 0.3899 0.6493 0.3391 0.117*
H16B 0.3089 0.7735 0.3410 0.117*
H16C 0.4344 0.7893 0.3925 0.117*
O17 1.06660 (13) 0.09730 (18) 0.70144 (12) 0.0924 (5)
C18 0.99445 (13) 0.26473 (18) 0.45153 (13) 0.0565 (4)
H18 1.0455 0.2211 0.4202 0.068*
C19 0.91880 (13) 0.35567 (18) 0.39485 (12) 0.0545 (4)
H19 0.9193 0.3726 0.3258 0.065*
C20 0.70063 (12) 0.73037 (17) 0.15876 (12) 0.0504 (4)
H20 0.7673 0.7185 0.1387 0.060*
C21 0.61918 (12) 0.81096 (16) 0.09903 (11) 0.0492 (4)
H21 0.6312 0.8521 0.0389 0.059*
H15 0.3862 (18) 0.925 (2) 0.0989 (16) 0.077 (6)*
H10 0.8383 (16) 0.5785 (18) 0.2855 (14) 0.060 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0488 (6) 0.0743 (7) 0.0522 (6) 0.0172 (5) 0.0227 (5) 0.0181 (5)
C1 0.1014 (17) 0.1064 (18) 0.1052 (18) 0.0560 (15) 0.0308 (14) 0.0244 (15)
C2 0.0615 (10) 0.0546 (9) 0.0794 (12) 0.0128 (8) −0.0002 (9) 0.0111 (8)
O3 0.0589 (7) 0.0652 (7) 0.0676 (7) 0.0188 (6) 0.0084 (6) 0.0122 (6)
C4 0.0489 (8) 0.0607 (10) 0.0612 (10) 0.0016 (7) 0.0069 (7) 0.0083 (7)
C5 0.0413 (7) 0.0544 (8) 0.0556 (9) −0.0004 (6) 0.0057 (7) 0.0063 (7)
C6 0.0572 (9) 0.0845 (12) 0.0516 (9) 0.0134 (9) 0.0171 (8) 0.0164 (8)
C7 0.0524 (9) 0.0764 (11) 0.0585 (9) 0.0149 (8) 0.0217 (8) 0.0141 (8)
C8 0.0360 (7) 0.0497 (8) 0.0512 (8) −0.0022 (6) 0.0067 (6) 0.0026 (6)
N1 0.0388 (6) 0.0501 (7) 0.0490 (7) 0.0018 (5) 0.0061 (5) 0.0021 (5)
C10 0.0381 (7) 0.0510 (8) 0.0520 (8) −0.0007 (6) 0.0086 (6) 0.0004 (6)
C11 0.0416 (7) 0.0456 (7) 0.0451 (7) −0.0002 (6) 0.0085 (6) 0.0000 (6)
C12 0.0472 (8) 0.0480 (8) 0.0405 (7) 0.0020 (6) 0.0114 (6) 0.0049 (6)
C13 0.0409 (7) 0.0450 (7) 0.0405 (7) 0.0005 (6) 0.0125 (6) −0.0003 (6)
C14 0.0439 (7) 0.0435 (7) 0.0376 (7) −0.0011 (6) 0.0071 (6) 0.0002 (5)
O15 0.0483 (6) 0.0630 (7) 0.0439 (6) 0.0092 (5) 0.0122 (5) 0.0125 (5)
C16 0.0667 (11) 0.1140 (17) 0.0626 (11) 0.0195 (11) 0.0365 (9) 0.0240 (11)
O17 0.0848 (10) 0.1206 (13) 0.0759 (9) 0.0343 (9) 0.0268 (8) 0.0444 (9)
C18 0.0503 (8) 0.0636 (10) 0.0564 (9) 0.0106 (7) 0.0131 (7) 0.0017 (7)
C19 0.0544 (9) 0.0625 (9) 0.0462 (8) 0.0100 (7) 0.0102 (7) 0.0034 (7)
C20 0.0415 (7) 0.0605 (9) 0.0523 (8) 0.0005 (7) 0.0170 (6) 0.0022 (7)
C21 0.0487 (8) 0.0596 (9) 0.0420 (7) −0.0011 (7) 0.0152 (6) 0.0068 (6)

Geometric parameters (Å, º)

O1—C13 1.3650 (17) N1—C10 1.2739 (19)
O1—C16 1.418 (2) C10—C11 1.455 (2)
C1—C2 1.471 (3) C10—H10 0.960 (19)
C1—H1A 0.9600 C11—C20 1.389 (2)
C1—H1B 0.9600 C11—C12 1.402 (2)
C1—H1C 0.9600 C12—C13 1.372 (2)
C2—O3 1.446 (2) C12—H12 0.9300
C2—H2A 0.9700 C13—C14 1.4070 (19)
C2—H2B 0.9700 C14—O15 1.3469 (17)
O3—C4 1.329 (2) C14—C21 1.380 (2)
C4—O17 1.202 (2) O15—H15 0.88 (2)
C4—C5 1.486 (2) C16—H16A 0.9600
C5—C18 1.382 (2) C16—H16B 0.9600
C5—C6 1.388 (2) C16—H16C 0.9600
C6—C7 1.373 (2) C18—C19 1.382 (2)
C6—H6 0.9300 C18—H18 0.9300
C7—C8 1.390 (2) C19—H19 0.9300
C7—H7 0.9300 C20—C21 1.381 (2)
C8—C19 1.387 (2) C20—H20 0.9300
C8—N1 1.4152 (18) C21—H21 0.9300
C13—O1—C16 117.64 (12) C11—C10—H10 115.0 (11)
C2—C1—H1A 109.5 C20—C11—C12 118.87 (13)
C2—C1—H1B 109.5 C20—C11—C10 119.95 (13)
H1A—C1—H1B 109.5 C12—C11—C10 121.18 (13)
C2—C1—H1C 109.5 C13—C12—C11 120.24 (13)
H1A—C1—H1C 109.5 C13—C12—H12 119.9
H1B—C1—H1C 109.5 C11—C12—H12 119.9
O3—C2—C1 107.05 (16) O1—C13—C12 125.80 (13)
O3—C2—H2A 110.3 O1—C13—C14 113.73 (12)
C1—C2—H2A 110.3 C12—C13—C14 120.46 (13)
O3—C2—H2B 110.3 O15—C14—C21 119.69 (12)
C1—C2—H2B 110.3 O15—C14—C13 121.15 (12)
H2A—C2—H2B 108.6 C21—C14—C13 119.15 (13)
C4—O3—C2 117.42 (14) C14—O15—H15 111.7 (14)
O17—C4—O3 123.07 (16) O1—C16—H16A 109.5
O17—C4—C5 124.49 (16) O1—C16—H16B 109.5
O3—C4—C5 112.43 (14) H16A—C16—H16B 109.5
C18—C5—C6 118.72 (15) O1—C16—H16C 109.5
C18—C5—C4 122.37 (15) H16A—C16—H16C 109.5
C6—C5—C4 118.91 (15) H16B—C16—H16C 109.5
C7—C6—C5 120.74 (15) C19—C18—C5 120.78 (15)
C7—C6—H6 119.6 C19—C18—H18 119.6
C5—C6—H6 119.6 C5—C18—H18 119.6
C6—C7—C8 120.60 (15) C18—C19—C8 120.32 (15)
C6—C7—H7 119.7 C18—C19—H19 119.8
C8—C7—H7 119.7 C8—C19—H19 119.8
C19—C8—C7 118.78 (14) C21—C20—C11 120.90 (13)
C19—C8—N1 123.94 (14) C21—C20—H20 119.6
C7—C8—N1 117.23 (13) C11—C20—H20 119.6
C10—N1—C8 120.99 (12) C14—C21—C20 120.36 (13)
N1—C10—C11 123.17 (13) C14—C21—H21 119.8
N1—C10—H10 121.8 (11) C20—C21—H21 119.8
C1—C2—O3—C4 −178.81 (19) C16—O1—C13—C12 5.9 (2)
C2—O3—C4—O17 −0.7 (3) C16—O1—C13—C14 −175.42 (16)
C2—O3—C4—C5 178.40 (14) C11—C12—C13—O1 179.61 (14)
O17—C4—C5—C18 −170.41 (19) C11—C12—C13—C14 1.1 (2)
O3—C4—C5—C18 10.6 (2) O1—C13—C14—O15 −1.10 (19)
O17—C4—C5—C6 9.2 (3) C12—C13—C14—O15 177.62 (13)
O3—C4—C5—C6 −169.87 (16) O1—C13—C14—C21 179.55 (13)
C18—C5—C6—C7 2.0 (3) C12—C13—C14—C21 −1.7 (2)
C4—C5—C6—C7 −177.54 (17) C6—C5—C18—C19 −2.1 (3)
C5—C6—C7—C8 0.0 (3) C4—C5—C18—C19 177.46 (16)
C6—C7—C8—C19 −2.0 (3) C5—C18—C19—C8 0.1 (3)
C6—C7—C8—N1 175.45 (16) C7—C8—C19—C18 1.9 (3)
C19—C8—N1—C10 −31.1 (2) N1—C8—C19—C18 −175.34 (15)
C7—C8—N1—C10 151.56 (15) C12—C11—C20—C21 −1.3 (2)
C8—N1—C10—C11 177.71 (13) C10—C11—C20—C21 178.69 (14)
N1—C10—C11—C20 −173.29 (14) O15—C14—C21—C20 −178.47 (14)
N1—C10—C11—C12 6.7 (2) C13—C14—C21—C20 0.9 (2)
C20—C11—C12—C13 0.5 (2) C11—C20—C21—C14 0.6 (2)
C10—C11—C12—C13 −179.54 (13)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C11–C14/C20/C21 ring.

D—H···A D—H H···A D···A D—H···A
O15—H15···N1i 0.88 (2) 2.00 (2) 2.828 (2) 156 (2)
C2—H2B···Cg2ii 0.97 2.87 3.766 (2) 154

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+2, −y+1, −z+1.

References

  1. Bond, A. D. (2007). CrystEngComm, 9, 833–834.
  2. Bruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Byrn, S. R., Pfeiffer, R. R. & Stowell, J. G. (1999). West Lafayette: SSCI.
  4. Desiraju, G. R. (2003). CrystEngComm, 5, 466–467.
  5. Fejfarová, K., Dušek, M., Maghsodlou Rad, S. & Khalaji, A. D. (2012). Acta Cryst. E68, o2466. [DOI] [PMC free article] [PubMed]
  6. Good, D. J. & Rodríguez-Hornedo, N. (2009). Cryst. Growth Des. 9, 2252–2264.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Kurogoshi, S. & Hori, K. (1996). Acta Cryst. C52, 660–663.
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Neumcke, B., Schwarz, W. & Stampfli, R. (1981). Pflugers Arch. 390, 230–236. [DOI] [PubMed]
  11. Paul, E. L., Tung, H. H. & Midler, M. (2005). Powder Technol. 150, 133–143.
  12. Shakir, R. M., Ariffin, A. & Ng, S. W. (2010). Acta Cryst. E66, o2915. [DOI] [PMC free article] [PubMed]
  13. Shan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440–446. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Yadav, A. V., Shete, A. S., Dabke, A. P., Kulkarni, P. V. & Sakhare, S. S. (2009). Indian J. Pharm. Sci. 71, 359–370. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989016008999/su5304sup1.cif

e-72-00951-sup1.cif (559.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016008999/su5304Isup2.hkl

e-72-00951-Isup2.hkl (231.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016008999/su5304sup3.pdf

e-72-00951-sup3.pdf (215.5KB, pdf)

Supporting information file. DOI: 10.1107/S2056989016008999/su5304Isup4.cml

CCDC reference: 1483394

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES