Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jun 17;72(Pt 7):969–971. doi: 10.1107/S2056989016009075

Crystal structure of 6-hy­droxy-5-(2-meth­oxy­phenoxy)-2,2′-bipyrimidin-4(3H)-one

Belakavadi K Sagar a, Hemmige S Yathirajan a,*, Jerry P Jasinski b, Christopher Glidewell c
PMCID: PMC4992917  PMID: 27555942

In the crystal, a combination of N—H⋯O and O—H⋯O hydrogen bonds links the mol­ecules of the title compounds into a chain of rings.

Keywords: crystal structure, supra­molecular structure, bi­pyrimidines, mol­ecular conformation, hydrogen bonding

Abstract

In the title compound, C15H12N4O4, the dihedral angle between the heterocyclic rings is 12.60 (8)°, and that between the benzene ring and the adjacent heterocyclic ring is 85.14 (6)°. In the crystal, a combination of N—H⋯O and O—H⋯O hydrogen bonds link mol­ecules related by a glide plane into a C(5) C(6)[R 2 2(9)] chain of rings, which is a distinctly different packing motif to those observed in hydrated modifications of this compound.

Chemical context  

Pyrimidine derivatives exhibit a wide variety of biological actions (Önal & Yıldırım, 2007) and specific examples are of particular value in the treatment of cardiovascular diseases (Goldmann & Stoltefuss, 1991). One such derivative is bosentan, 4-tert-butyl-N-[6-(2-hy­droxy­eth­oxy)-5-(2-meth­oxyphen­oxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]benzene-1-sulfonamide, which is used in the treatment of pulmonary artery hypertension (Pearl et al., 1999; Hoeper et al., 2003; Kenyon & Nappi, 2003).graphic file with name e-72-00969-scheme1.jpg

4-Hy­droxy-5-(2-meth­oxy­phen­oxy)-2,2′-bipyrimidin-6(1H)-one (I) (Fig. 1) is an inter­mediate in the synthesis of bosentan (Rebelli et al., 2013; Kompella et al., 2014) and accordingly it is of inter­est to determine its crystal and mol­ecular structure, which we report here. Crystals of the anhydrous title compound (I) were obtained from a solution of a 1:1 mixture of di­methyl­sulfoxide and N,N-di­methyl­formamide in the presence of adipic acid: by contrast, a similar crystallization regime but omitting the adipic acid yielded the corresponding dihydrate (II) (Yamuna et al., 2013), so permitting comparison of the anhydrous and hydrated forms.

Figure 1.

Figure 1

The mol­ecular structure of compound (I) showing displacement ellipsoids drawn at the 30% probability level.

Structural commentary  

The bond distances in the ring containing atom N11 clearly show the presence of localized double bonds in the bonds C12=N13 and C14=C15 as well as the exocyclic C16=O16, fully consistent with the location of the H atoms on atoms N11 and O14, as deduced from difference maps and confirmed by the refinement. By contrast, the bond distances in the other heterocyclic ring indicate conventional aromatic-type delocalization.

At each of the sites C14, C31 and C32, the corresponding pairs of exocyclic O—C—N (at C14) or O—C—C angles (at C31 and C32) differ by almost 10°, as generally observed in the arenes of type ArOR when the substituent R lies close to the plane of the aryl ring (Seip & Seip, 1973; Ferguson et al., 1996). Here atoms C15 and C37 (Fig. 1) are displaced from the plane of the aryl ring (C31–C36) by 0.219 (3) and 0.204 (4) Å, respectively, with both substituents displaced to the same side of the aryl ring. The C—O—C angles at atoms O15 and O32, 115.41 (12) and 117.65 (18)° respectively, and the C—O—H angle at atom O14 is 114.2 (16)°; are all significantly larger the the idealized tetra­hedral value of 109.5°.

The dihedral angle between the heterocyclic rings is 12.60 (8)° and that between the ring containing N11 and the aryl ring is 85.14 (6)°. Accordingly, the mol­ecule of (I) exhibits no inter­nal symmetry and thus the compound is conformationally chiral: the centrosymmetric space group confirms that (I) crystallizes as a conformational racemate.

Supra­molecular inter­actions  

In the crystal, mol­ecules of (I) are linked by a combination of O—H⋯N and N—H⋯N hydrogen bonds (Table 1) to form a C(5) C(6)[Inline graphic(9)] chain of rings running parallel to the [001] direction (Fig. 2): adjacent mol­ecules are related by glide-plane symmetry. Two chains of this type, related to one another by inversion, pass through each unit cell, but there are no direction-specific inter­actions between adjacent chains.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O15i 0.855 (19) 2.257 (19) 2.9733 (18) 141.4 (17)
O14—H14⋯O16ii 0.85 (2) 1.80 (2) 2.6117 (18) 160 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

Part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded C(5) C(6)[Inline graphic)9)] chain of rings parallel to [001]. For the sake of clarity, the H atoms bonded to C atoms have all been omitted.

Database survey  

In the dihydrate (II), an extensive series of hydrogen bonds, encompassing N—H⋯O, O—H⋯N and O—H⋯O types links the mol­ecular components into a complex sheet structure (Yamuna et al., 2013), in contrast to the rather simple chains in (I) reported here. A sheet structure, built from a combination of the same three types of hydrogen bond is found also in the structure of bosentan monohydrate (Kaur et al., 2013).

Synthesis and crystallization  

A sample of compound (I) was a gift from Cadila Pharmaceuticals Ltd, Ahmedabad, Gujarat, India. Colourless plates of the anhydrous compound (I) were grown by slow evaporation, at room temperature of a solution of (I) in a mixture of di­methyl­sulfoxide and N,N-di­methyl­formamide (1:1, v/v) containing an excess of adipic acid (hexane-1,6-dioic acid).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances 0.93 Å (aromatic and heteroaromatic) or 0.96 Å (CH3) and with U iso(H) = kU eq(C) where k = 1.5 for the methyl group, which was permitted to rotate but not to tilt and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to O or N atoms, the atomic coordinates were refined with U iso(H) = 1.5U eq(O) or 1.2U eq(N), giving the O—H and N—H distances shown in Table 1.

Table 2. Experimental details.

Crystal data
Chemical formula C15H12N4O4
M r 312.29
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 12.1863 (9), 10.7079 (8), 11.1726 (8)
β (°) 105.412 (8)
V3) 1405.48 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.49 × 0.46 × 0.28
 
Data collection
Diffractometer Agilent Xcalibur, Eos, Gemini CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003)
T min, T max 0.812, 0.969
No. of measured, independent and observed [I > 2σ(I)] reflections 7121, 3113, 2311
R int 0.037
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.051, 0.134, 1.07
No. of reflections 3113
No. of parameters 215
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.25

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016009075/hb7590sup1.cif

e-72-00969-sup1.cif (271KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016009075/hb7590Isup2.hkl

e-72-00969-Isup2.hkl (248.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016009075/hb7590Isup3.cml

CCDC reference: 1483503

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

BKS thanks the UGC for the award of a Rajeev Gandhi fellowship and the University of Mysore for research facilities. HSY thanks Cadila Pharmaceuticals Ltd, Ahmedabad, Gujarat, India, for a sample of compound (I). JPJ acknowledges the NSF–MRI program (grant No. 1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Crystal data

C15H12N4O4 F(000) = 648
Mr = 312.29 Dx = 1.476 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.1863 (9) Å Cell parameters from 3266 reflections
b = 10.7079 (8) Å θ = 3.5–29.2°
c = 11.1726 (8) Å µ = 0.11 mm1
β = 105.412 (8)° T = 298 K
V = 1405.48 (19) Å3 Plate, colourles
Z = 4 0.49 × 0.46 × 0.28 mm

Data collection

Agilent Xcalibur, Eos, Gemini CCD diffractometer 2311 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.037
φ and ω scans θmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −15→15
Tmin = 0.812, Tmax = 0.969 k = −13→10
7121 measured reflections l = −14→14
3113 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: mixed
wR(F2) = 0.134 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.1493P] where P = (Fo2 + 2Fc2)/3
3113 reflections (Δ/σ)max < 0.001
215 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N11 0.18153 (12) 0.35790 (14) 0.63063 (13) 0.0295 (3)
H11 0.1817 (15) 0.3477 (17) 0.7066 (18) 0.035*
C12 0.14803 (12) 0.47018 (16) 0.58084 (14) 0.0257 (4)
N13 0.15092 (11) 0.50269 (13) 0.46986 (12) 0.0288 (3)
C14 0.19721 (13) 0.41910 (16) 0.40542 (14) 0.0259 (4)
C15 0.23862 (13) 0.30650 (15) 0.45349 (14) 0.0246 (4)
C16 0.22954 (14) 0.26765 (16) 0.57208 (15) 0.0286 (4)
O14 0.20095 (11) 0.45956 (12) 0.29445 (11) 0.0384 (3)
H14 0.2235 (18) 0.405 (2) 0.251 (2) 0.058*
O15 0.29101 (9) 0.22750 (11) 0.38791 (10) 0.0286 (3)
O16 0.26156 (12) 0.16663 (12) 0.62240 (11) 0.0435 (4)
N21 0.10457 (13) 0.51230 (15) 0.77235 (13) 0.0382 (4)
C22 0.11108 (13) 0.55897 (16) 0.66440 (15) 0.0287 (4)
N23 0.09267 (14) 0.67630 (15) 0.62621 (15) 0.0442 (4)
C24 0.06898 (19) 0.7543 (2) 0.7096 (2) 0.0534 (6)
H24 0.0564 0.8380 0.6881 0.064*
C25 0.06238 (17) 0.7179 (2) 0.8239 (2) 0.0503 (6)
H25 0.0467 0.7743 0.8805 0.060*
C26 0.07998 (16) 0.5938 (2) 0.85148 (18) 0.0472 (5)
H26 0.0746 0.5653 0.9283 0.057*
C31 0.41008 (14) 0.22844 (17) 0.42471 (15) 0.0305 (4)
C32 0.46353 (16) 0.1335 (2) 0.37687 (17) 0.0417 (5)
C33 0.58106 (19) 0.1307 (3) 0.4082 (2) 0.0639 (7)
H33 0.6184 0.0678 0.3771 0.077*
C34 0.64289 (19) 0.2205 (3) 0.4850 (3) 0.0713 (8)
H34 0.7220 0.2185 0.5043 0.086*
C35 0.59019 (18) 0.3127 (3) 0.5336 (2) 0.0595 (6)
H35 0.6330 0.3720 0.5868 0.071*
C36 0.47253 (15) 0.3169 (2) 0.50285 (17) 0.0414 (5)
H36 0.4358 0.3795 0.5351 0.050*
O32 0.39382 (13) 0.05064 (15) 0.30120 (14) 0.0585 (5)
C37 0.4443 (3) −0.0572 (3) 0.2648 (2) 0.0755 (8)
H37A 0.4889 −0.0336 0.2095 0.113*
H37B 0.3857 −0.1143 0.2233 0.113*
H37C 0.4923 −0.0968 0.3369 0.113*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N11 0.0418 (8) 0.0269 (8) 0.0233 (7) 0.0053 (6) 0.0148 (6) 0.0020 (6)
C12 0.0255 (8) 0.0249 (9) 0.0261 (8) 0.0005 (7) 0.0059 (6) −0.0018 (7)
N13 0.0345 (7) 0.0239 (8) 0.0278 (7) 0.0035 (6) 0.0078 (6) 0.0006 (6)
C14 0.0298 (8) 0.0261 (9) 0.0216 (7) −0.0028 (7) 0.0063 (6) −0.0010 (7)
C15 0.0283 (8) 0.0233 (9) 0.0235 (7) 0.0008 (7) 0.0090 (6) −0.0023 (7)
C16 0.0342 (9) 0.0251 (10) 0.0283 (8) 0.0022 (7) 0.0112 (6) 0.0005 (7)
O14 0.0632 (8) 0.0300 (8) 0.0255 (6) 0.0066 (6) 0.0178 (6) 0.0038 (5)
O15 0.0310 (6) 0.0293 (7) 0.0267 (6) 0.0032 (5) 0.0098 (4) −0.0058 (5)
O16 0.0722 (9) 0.0286 (8) 0.0360 (7) 0.0176 (7) 0.0256 (6) 0.0095 (6)
N21 0.0455 (9) 0.0392 (10) 0.0327 (8) −0.0007 (7) 0.0155 (6) −0.0068 (7)
C22 0.0273 (8) 0.0283 (10) 0.0304 (8) −0.0007 (7) 0.0074 (6) −0.0054 (7)
N23 0.0592 (10) 0.0287 (9) 0.0473 (9) 0.0076 (8) 0.0189 (8) −0.0052 (7)
C24 0.0661 (14) 0.0319 (12) 0.0638 (14) 0.0109 (10) 0.0198 (11) −0.0135 (10)
C25 0.0466 (11) 0.0519 (14) 0.0544 (13) 0.0037 (10) 0.0169 (9) −0.0267 (11)
C26 0.0511 (11) 0.0596 (15) 0.0354 (10) −0.0023 (11) 0.0194 (9) −0.0162 (10)
C31 0.0315 (8) 0.0330 (10) 0.0278 (8) 0.0055 (7) 0.0091 (6) 0.0059 (7)
C32 0.0456 (11) 0.0453 (13) 0.0333 (9) 0.0162 (9) 0.0092 (8) 0.0034 (9)
C33 0.0484 (13) 0.085 (2) 0.0592 (14) 0.0317 (13) 0.0169 (11) 0.0048 (14)
C34 0.0340 (12) 0.101 (2) 0.0756 (17) 0.0110 (13) 0.0089 (11) 0.0157 (17)
C35 0.0424 (12) 0.0687 (17) 0.0600 (14) −0.0114 (11) 0.0008 (10) 0.0076 (13)
C36 0.0394 (10) 0.0399 (12) 0.0438 (11) −0.0031 (9) 0.0089 (8) 0.0016 (9)
O32 0.0649 (9) 0.0506 (10) 0.0543 (9) 0.0259 (8) 0.0057 (7) −0.0188 (8)
C37 0.113 (2) 0.0547 (16) 0.0594 (15) 0.0433 (15) 0.0238 (14) −0.0059 (13)

Geometric parameters (Å, º)

N11—C12 1.342 (2) C26—N21 1.332 (2)
N11—H11 0.86 (2) C16—O16 1.234 (2)
C12—N13 1.297 (2) C26—H26 0.9300
C12—C22 1.484 (2) C31—C36 1.373 (3)
N13—C14 1.361 (2) C31—C32 1.389 (3)
C14—C15 1.361 (2) C32—O32 1.357 (2)
C15—C16 1.421 (2) C32—C33 1.381 (3)
C16—N11 1.381 (2) C33—C34 1.373 (4)
C14—O14 1.3255 (19) C33—H33 0.9300
C15—O15 1.3816 (18) C34—C35 1.367 (4)
O14—H14 0.85 (2) C34—H34 0.9300
O15—C31 1.3990 (19) C35—C36 1.384 (3)
N21—C22 1.327 (2) C35—H35 0.9300
C22—N23 1.327 (2) C36—H36 0.9300
N23—C24 1.339 (2) O32—C37 1.418 (3)
C24—C25 1.358 (3) C37—H37A 0.9600
C24—H24 0.9300 C37—H37B 0.9600
C25—C26 1.368 (3) C37—H37C 0.9600
C25—H25 0.9300
C12—N11—C16 123.44 (14) N21—C26—H26 118.8
C12—N11—H11 116.5 (13) C25—C26—H26 118.8
C16—N11—H11 119.4 (13) C36—C31—C32 120.81 (17)
N13—C12—N11 123.65 (15) O15—C31—C32 115.95 (15)
N13—C12—C22 121.28 (15) O15—C31—C36 123.24 (16)
N11—C12—C22 115.02 (14) O32—C32—C31 116.00 (16)
C12—N13—C14 116.70 (14) O32—C32—C33 125.34 (19)
O14—C14—N13 113.69 (14) C15—O15—C31 115.41 (12)
O14—C14—C15 123.87 (15) C32—O32—C37 117.65 (18)
C15—C14—N13 122.41 (14) C33—C32—C31 118.7 (2)
C14—C15—O15 120.54 (13) C34—C33—C32 120.2 (2)
C14—C15—C16 120.98 (15) C34—C33—H33 119.9
O15—C15—C16 118.47 (14) C32—C33—H33 119.9
O16—C16—N11 121.35 (15) C35—C34—C33 121.1 (2)
O16—C16—C15 126.03 (16) C35—C34—H34 119.4
N11—C16—C15 112.61 (14) C33—C34—H34 119.4
C14—O14—H14 114.2 (16) C34—C35—C36 119.4 (2)
C22—N21—C26 115.78 (17) C34—C35—H35 120.3
N23—C22—N21 127.09 (16) C36—C35—H35 120.3
N23—C22—C12 117.26 (15) C31—C36—C35 119.9 (2)
N21—C22—C12 115.59 (15) C31—C36—H36 120.1
C22—N23—C24 114.59 (17) C35—C36—H36 120.1
N23—C24—C25 123.6 (2) O32—C37—H37A 109.5
N23—C24—H24 118.2 O32—C37—H37B 109.5
C25—C24—H24 118.2 H37A—C37—H37B 109.5
C24—C25—C26 116.47 (19) O32—C37—H37C 109.5
C24—C25—H25 121.8 H37A—C37—H37C 109.5
C26—C25—H25 121.8 H37B—C37—H37C 109.5
N21—C26—C25 122.44 (19)
C16—N11—C12—N13 4.3 (2) N11—C12—C22—N21 −6.7 (2)
C16—N11—C12—C22 −173.20 (14) N21—C22—N23—C24 2.4 (3)
N11—C12—N13—C14 −4.0 (2) C12—C22—N23—C24 −174.60 (16)
C22—C12—N13—C14 173.33 (13) C22—N23—C24—C25 −0.9 (3)
C12—N13—C14—O14 −177.94 (14) N23—C24—C25—C26 −0.8 (3)
C12—N13—C14—C15 0.1 (2) C22—N21—C26—C25 0.0 (3)
O14—C14—C15—O15 1.7 (2) C24—C25—C26—N21 1.3 (3)
N13—C14—C15—O15 −176.13 (13) C15—O15—C31—C36 −12.1 (2)
O14—C14—C15—C16 −178.56 (15) C15—O15—C31—C32 168.10 (14)
N13—C14—C15—C16 3.6 (2) C36—C31—C32—O32 179.61 (17)
C12—N11—C16—O16 178.32 (16) O15—C31—C32—O32 −0.6 (2)
C12—N11—C16—C15 −0.4 (2) C36—C31—C32—C33 −0.8 (3)
C14—C15—C16—O16 178.06 (17) O15—C31—C32—C33 178.93 (17)
O15—C15—C16—O16 −2.2 (3) O32—C32—C33—C34 179.5 (2)
C14—C15—C16—N11 −3.2 (2) C31—C32—C33—C34 −0.1 (3)
O15—C15—C16—N11 176.48 (13) C32—C33—C34—C35 1.1 (4)
C14—C15—O15—C31 100.24 (17) C33—C34—C35—C36 −1.2 (4)
C16—C15—O15—C31 −79.49 (18) C32—C31—C36—C35 0.7 (3)
C26—N21—C22—N23 −2.0 (3) O15—C31—C36—C35 −179.05 (17)
C26—N21—C22—C12 175.03 (15) C34—C35—C36—C31 0.3 (3)
N13—C12—C22—N23 −6.9 (2) C33—C32—O32—C37 9.3 (3)
N11—C12—C22—N23 170.67 (15) C31—C32—O32—C37 −171.21 (19)
N13—C12—C22—N21 175.73 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N11—H11···O15i 0.855 (19) 2.257 (19) 2.9733 (18) 141.4 (17)
O14—H14···O16ii 0.85 (2) 1.80 (2) 2.6117 (18) 160 (2)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.
  3. Goldmann, S. & Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 1559–1578.
  4. Hoeper, M., Taha, N., Bekjarova, A., Gatzke, R. & Spiekerkoetter, E. (2003). Eur. Respir. J. 22, 330–334. [DOI] [PubMed]
  5. Kaur, M., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S., Betz, R., Gerber, T. & Butcher, R. J. (2013). Acta Cryst. E69, o12–o13. [DOI] [PMC free article] [PubMed]
  6. Kenyon, K. W. & Nappi, J. M. (2003). Ann. Pharmacother. 37, 1055–1062. [DOI] [PubMed]
  7. Kompella, A., Kasa, S., Balina, V. S., Kusumba, S., Adibhatla, B. R. K. & Muddasani, P. R. (2014). Sci. J. Chem. 2, 9–15.
  8. Önal, Z. & Yıldırım, İ. (2007). Heterocycl. Commun. 13, 113–120.
  9. Pearl, J. M., Wellmann, S. A., McNamara, J. L., Lombardi, J. P., Wagner, C. J., Raake, J. L. & Nelson, D. P. (1999). Ann. Thorac. Surg. 68, 1714–21 discussion 1721–1714-21; discussion 1722. [DOI] [PubMed]
  10. Rebelli, P., Yerrabelly, J. R., Yalamanchili, B. K., Kommera, R., Ghojala, V. R. & Bairy, K. R. (2013). Org. Process Res. Dev. 17, 1021–1026.
  11. Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.
  12. Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Yamuna, T. S., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1707–o1708. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016009075/hb7590sup1.cif

e-72-00969-sup1.cif (271KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016009075/hb7590Isup2.hkl

e-72-00969-Isup2.hkl (248.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016009075/hb7590Isup3.cml

CCDC reference: 1483503

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES