Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jun 17;72(Pt 7):980–983. doi: 10.1107/S2056989016009762

Crystal structures of (E)-N′-(2-hy­droxy-5-methyl­benzyl­idene)isonicotinohydrazide and (E)-N′-(5-fluoro-2-hy­droxy­benzyl­idene)isonicotinohydrazide

Kittipong Chainok a, Sureerat Makmuang b, Filip Kielar b,*
PMCID: PMC4992920  PMID: 27555945

The title isonicotinohydrazides adopt an E conformation about the C=N bonds and in each mol­ecule there is an intra­molecular O—H⋯N hydrogen bond, forming an S(6) ring motif. In the crystals of both compounds, zigzag chains are formed via N—H⋯N hydrogen bonds, in the [10Inline graphic] the first compound and [010] for the other.

Keywords: crystal structure, iron chelator, isonicotinohydrazide, hydrogen bonds

Abstract

Two derivatives of the well-known iron chelator, (E)-N′-(2-hy­droxy­benzyl­idene)isonicotinohydrazide (SIH), substituted in the 5-position of the 2-hy­droxy­benzene ring by a methyl and a fluorine group viz. (E)-N′-(2-hy­droxy-5-methyl­benzyl­idene)isonicotinohydrazide, C14H13N3O2, (I), and (E)-N′-(5-fluoro-2-hy­droxy­benzyl­idene)isonicotinohydrazide, C13H10FN3O2, (II), have been prepared and characterized by single-crystal X-ray diffraction, 1H NMR and mass spectrometry. The mol­ecules of both compounds deviate slightly from planarity [r.m.s. deviations are 0.145 and 0.110 Å for (I) and (II), respectively] and adopt an E conformation with respect to the double bond of the hydrazone bridge. In each mol­ecule, there is an intra­molecular O—H⋯N hydrogen bond forming an S(6) ring motif. The dihedral angles between the mean planes of the isonicotinoyl ring and the cresol ring in (I) or the fluoro­phenol ring in (II) are 10.49 (6) and 9.43 (6)°, respectively. In the crystals of both compounds, zigzag chains are formed via N—H⋯N hydrogen bonds, in the [10-1] direction for (I) and [010] for (II). In (I), the chains are linked by weak C—H⋯π and π–π stacking inter­actions [centroid-to-centroid distances = 3.6783 (8) Å; inter-planar angle = 10.94 (5)°], leading to the formation of a three-dimensional supra­molecular architecture. In (II), adjacent chains are connected through C—H⋯O hydrogen bonds to form sheets parallel to (100), which enclose R 4 4(30) ring motifs. The sheets are linked by weak C—H⋯π and π–π [centroid-to-centroid distance = 3.7147 (8) Å; inter-planar angle = 10.94 (5)°] inter­actions, forming a three-dimensional supra­molecular architecture.

Chemical context  

Hydrazone-based chelators for metal ions have received a significant amount of attention (Bendova et al., 2010; Hrušková et al., 2016). Compounds from this class, such as salicyl aldehyde isonicotinoyl hydrazide (SIH), have been studied as potential metal chelators in biological systems (Hrušková et al., 2011). These compounds have also been shown to be effective in protecting against metal-based oxidative stress (Jansová et al., 2014). In our research we are inter­ested in developing probes for metal ions (Carter et al., 2014). We have therefore synthesized the title compounds, which are derivatives of the chelator SIH containing a signalling unit.

Structural commentary  

The mol­ecular structures of the title compounds, (I) and (II), are illustrated in Figs. 1 and 2, respectively. They consist of an isonicotinoyl moiety linked by a –C7=N3–N2– linkage to a cresol unit in (I) and a fluoro­phenol ring in (II). The mol­ecules deviate slightly from planarity with the r.m.s deviations for the fitted atoms being 0.145 for (I) and 0.110 Å for (II). In each mol­ecule, there is an intra­molecular O—H⋯N hydrogen bond forming an S(6) ring motif. Both compounds have an E conformation with respect to the double bond of the hydrazone bridge (C7=N3) with the C8—C7=N3—N2 torsion angles being −179.03 (12) and −177.61 (11)° for (I) and (II), respectively. The dihedral angles between the mean planes of the isonicotinoyl moiety and the cresol moiety in (I), or the fluoro­phenol moiety in (II) are 10.49 (6) and 9.43 (6)°, respectively. The bond lengths and angles in the title mol­ecules agree reasonably well with those found in closely related structures (Chumakov et al., 2001; Yang, 2006a ,b ; Kargar et al., 2010; Sedaghat et al., 2014)graphic file with name e-72-00980-scheme1.jpg.

Figure 1.

Figure 1

The mol­ecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line (see Table 1).

Figure 2.

Figure 2

The mol­ecular structure of compound (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line (see Table 2).

Supra­molecular features  

In the crystals of both compounds, zigzag chains are formed via N—H⋯N hydrogen bonds (Tables 1 and 2), in direction [10Inline graphic] for (I) and [010] for (II). In (I), the chains are linked by weak C—H⋯π and π–π stacking inter­actions [centroid-to-centroid distances = 3.6783 (8) Å; inter-planar angle = 10.94 (5)°], leading to the formation of a three-dimensional supra­molecular architecture (Fig. 3). In (II), adjacent chains are connected through C—H⋯O hydrogen bonds to form sheets parallel to (100), which enclose Inline graphic(30) ring motifs. Weak C—H⋯π and π—π [centroid-to-centroid distance = 3.7147 (8) Å, inter-planar angle = 10.94 (5)°] inter­actions link the sheets, forming a three-dimensional supra­molecular architecture (Fig. 4).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg1 is the centroid of the N1/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯N3 0.82 1.87 2.5857 (16) 145
N2—H2N⋯N1i 0.86 2.19 3.0232 (17) 164
C10—H10⋯Cg1ii 0.93 2.85 3.5259 (17) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg1 is the centroid of the N1/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N3 0.82 1.92 2.6329 (15) 145
N2—H2A⋯N1i 0.86 2.19 2.8889 (15) 138
C10—H10⋯O1ii 0.93 2.51 3.2573 (18) 138
C11—H11⋯Cg1iii 0.93 2.98 3.8917 (18) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

Partial view along the a axis of the crystal packing of compound (I), showing the hydrogen-bonded (dashed lines; see Table 1) zigzag chains parallel to [10Inline graphic].

Figure 4.

Figure 4

Partial view along the a axis of the crystal packing of compound (II), showing the N—H⋯N and C—H⋯O hydrogen-bonded (dashed lines; see Table 2) sheet propagating in the bc plane.

Database survey  

A search of the Cambridge Structural Database (Version 5.37, last update November 2015; Groom et al., 2016) indicated the presence of 40 structures containing the (E)-N-(2-hy­droxy­bezylydene)isonicotinohydrazide substructure. They include the isotypic crystal structures with chloride (UCAREV, Chumakov et al., 2001; UCAREV01, Yang, 2006a ), bromide (XENDOK, Yang, 2006b ; XENDOK01, Sedaghat et al., 2014) and meth­oxy (VACHAK, Kargar et al., 2010) groups substituted at the 5-position of the phenyl ring. In the crystals of all three compounds, the N—H⋯N hydrogen bond involving the hydrazone hydrogen and the pyridine nitro­gen atoms organize the mol­ecules into a herringbone motif, while in the crystal of the meth­oxy compound there are also weak N—H⋯O and C—H⋯O hydrogen bonds present forming Inline graphic(6) ring motifs.

Synthesis and crystallization  

A solution of isonicotinic acid hydrazide (0.184 g, 1.34 mmol) and the appropriately substituted salicyl aldehyde (1.47 mmol) in a mixture of ethanol (3 ml) and water (1 ml) containing a catalytic amount of acetic acid was heated to reflux for 5 h. The reaction mixture was allowed to cool to room temperature, resulting in the formation of a white precipitate. The reaction mixture was filtered and the isolated solid was washed with diethyl ether and dried in vacuo. The compounds were isolated as white crystalline solids in 73% and 66% yield for the methyl (I) and fluoro (II) derivatives, respectively. Single crystals suitable for X-ray diffraction were grown by slow evaporation of methano­lic solutions of the title compounds.

Spectroscopic data for (I): 1H NMR (400 MHz, DMSO-d 6) d 2.25 (1H, s, CH3), 6.84 (1H, d, J = 8.4, CH—Ph), 7.12 (1H, dd, J = 2.0, J = 8.4, CH—Ph), 7.40 (1H, d, J = 1.6, CH—Ph), 7.84 (2H, d, J = 6.0, CH—Py), 8.63 (1H, s, CH=N), 8.79 (2H, d, J = 6.0, CH—Py), 10.82 (1H, s, NH), 12.26 (1H, s, OH). HR–MS (ES+) C14H14N3O2 requires 256.1086 [M+H]+; found 256.1051.

Spectroscopic data for (II): 1H NMR (400 MHz, DMSO-d 6) d 6.94 (1H, dd, J = 4.4, J = 8.8, CH—Ph), 7.16 (1H, td, J = 3.2, J = 8.8, CH—Ph), 7.46 (1H, dd, J = 3.2, J = 9.6, CH—Ph), 7.84 (2H, d, J = 6.0, CH—Py), 8.67 (1H, s, CH=N), 8.80 (2H, d, J = 6.0, CH—Py), 10.84 (1H, s, NH), 12.35 (1H, s, OH). HR–MS (ES+) C13H11FN3O2 requires 260.0835 [M+H]+; found 260.0831.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms bonded to C, N, and O atoms were placed at calculated positions and refined using a riding-model approximation: N—H = 0.86 Å, O—H = 0.82 Å, and C—H = 0.93–0.96 Å with U iso(H) = 1.5U eq(C-methyl,O) and 1.2U eq(N,C) for other H atoms.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C14H13N3O2 C13H10FN3O2
M r 255.27 259.24
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 296 296
a, b, c (Å) 8.5318 (4), 15.9973 (8), 9.4637 (5) 8.9195 (3), 10.1128 (3), 13.6254 (4)
β (°) 102.738 (2) 103.481 (1)
V3) 1259.87 (11) 1195.16 (6)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.11
Crystal size (mm) 0.30 × 0.22 × 0.22 0.32 × 0.26 × 0.26
 
Data collection
Diffractometer Bruker D8 QUEST CMOS Bruker APEX2 D8 QUEST CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014) Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.685, 0.746 0.685, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 26052, 2996, 2111 31833, 2848, 2128
R int 0.045 0.039
(sin θ/λ)max−1) 0.659 0.658
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.126, 1.01 0.042, 0.124, 1.03
No. of reflections 2996 2848
No. of parameters 174 174
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.22 0.26, −0.29

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) Global, I, II. DOI: 10.1107/S2056989016009762/su5301sup1.cif

e-72-00980-sup1.cif (999.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016009762/su5301Isup2.hkl

e-72-00980-Isup2.hkl (164.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016009762/su5301Isup4.cdx

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016009762/su5301IIsup3.hkl

e-72-00980-IIsup3.hkl (156.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016009762/su5301Isup5.cml

Supporting information file. DOI: 10.1107/S2056989016009762/su5301IIsup6.cml

CCDC references: 1485834, 1485833

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a National Research Councils of Thailand grant provided by the Naresuan University Division of Research Administration (R2558B106). The authors thank the Faculty of Science and Technology, Thammasat University, for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

(I) (E)-N'-(2-Hydroxy-5-methylbenzylidene)isonicotinohydrazide . Crystal data

C14H13N3O2 F(000) = 536
Mr = 255.27 Dx = 1.346 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.5318 (4) Å Cell parameters from 6456 reflections
b = 15.9973 (8) Å θ = 2.9–27.3°
c = 9.4637 (5) Å µ = 0.09 mm1
β = 102.738 (2)° T = 296 K
V = 1259.87 (11) Å3 Block, colourless
Z = 4 0.30 × 0.22 × 0.22 mm

(I) (E)-N'-(2-Hydroxy-5-methylbenzylidene)isonicotinohydrazide . Data collection

Bruker D8 QUEST CMOS diffractometer 2996 independent reflections
Radiation source: microfocus sealed x-ray tube, Incoatec Iµus 2111 reflections with I > 2σ(I)
GraphiteDouble Bounce Multilayer Mirror monochromator Rint = 0.045
Detector resolution: 10.5 pixels mm-1 θmax = 27.9°, θmin = 2.9°
φ and ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −21→21
Tmin = 0.685, Tmax = 0.746 l = −12→12
26052 measured reflections

(I) (E)-N'-(2-Hydroxy-5-methylbenzylidene)isonicotinohydrazide . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.2954P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
2996 reflections Δρmax = 0.20 e Å3
174 parameters Δρmin = −0.22 e Å3
0 restraints

(I) (E)-N'-(2-Hydroxy-5-methylbenzylidene)isonicotinohydrazide . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(I) (E)-N'-(2-Hydroxy-5-methylbenzylidene)isonicotinohydrazide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.55036 (17) 0.49610 (7) 0.82618 (13) 0.0710 (4)
O2 0.21987 (15) 0.36743 (7) 0.62695 (11) 0.0575 (3)
H2O 0.2779 0.4085 0.6481 0.086*
N1 0.84669 (14) 0.76238 (8) 0.96854 (13) 0.0422 (3)
N2 0.43283 (14) 0.57825 (7) 0.63975 (12) 0.0390 (3)
H2N 0.4281 0.6255 0.5957 0.047*
N3 0.33377 (14) 0.51301 (7) 0.58586 (13) 0.0392 (3)
C1 0.81205 (18) 0.69573 (9) 1.04127 (15) 0.0430 (4)
H1 0.8580 0.6923 1.1398 0.052*
C2 0.71232 (18) 0.63196 (9) 0.97872 (15) 0.0418 (4)
H2 0.6922 0.5868 1.0340 0.050*
C3 0.64217 (16) 0.63598 (8) 0.83192 (15) 0.0362 (3)
C4 0.67688 (16) 0.70444 (9) 0.75506 (15) 0.0377 (3)
H4 0.6321 0.7096 0.6565 0.045*
C5 0.77918 (17) 0.76509 (9) 0.82720 (15) 0.0406 (3)
H5 0.8025 0.8106 0.7741 0.049*
C6 0.53873 (18) 0.56378 (9) 0.76673 (16) 0.0415 (3)
C7 0.23407 (16) 0.51994 (8) 0.46483 (14) 0.0365 (3)
H7 0.2291 0.5691 0.4116 0.044*
C8 0.12838 (16) 0.45084 (8) 0.41038 (14) 0.0336 (3)
C9 0.12462 (17) 0.37797 (9) 0.49306 (15) 0.0393 (3)
C10 0.02068 (19) 0.31395 (9) 0.43625 (17) 0.0463 (4)
H10 0.0153 0.2664 0.4914 0.056*
C11 −0.07485 (18) 0.31991 (10) 0.29884 (17) 0.0453 (4)
H11 −0.1419 0.2755 0.2622 0.054*
C12 −0.07365 (16) 0.39037 (10) 0.21364 (15) 0.0409 (4)
C13 0.02749 (17) 0.45510 (9) 0.27258 (15) 0.0378 (3)
H13 0.0283 0.5034 0.2182 0.045*
C14 −0.1769 (2) 0.39481 (12) 0.06279 (18) 0.0601 (5)
H14A −0.1905 0.3397 0.0218 0.090*
H14B −0.1260 0.4299 0.0039 0.090*
H14C −0.2800 0.4176 0.0664 0.090*

(I) (E)-N'-(2-Hydroxy-5-methylbenzylidene)isonicotinohydrazide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0903 (10) 0.0412 (7) 0.0624 (8) −0.0114 (6) −0.0244 (7) 0.0126 (6)
O2 0.0751 (8) 0.0487 (7) 0.0403 (6) −0.0108 (6) −0.0055 (5) 0.0119 (5)
N1 0.0409 (7) 0.0425 (7) 0.0401 (7) 0.0010 (5) 0.0022 (5) −0.0074 (5)
N2 0.0408 (7) 0.0309 (6) 0.0400 (7) −0.0020 (5) −0.0022 (5) −0.0019 (5)
N3 0.0409 (7) 0.0332 (6) 0.0404 (7) −0.0023 (5) 0.0021 (5) −0.0041 (5)
C1 0.0457 (8) 0.0465 (9) 0.0320 (7) 0.0056 (7) −0.0018 (6) −0.0044 (6)
C2 0.0475 (8) 0.0376 (8) 0.0368 (8) 0.0037 (6) 0.0019 (6) 0.0009 (6)
C3 0.0341 (7) 0.0348 (7) 0.0368 (7) 0.0065 (6) 0.0018 (6) −0.0044 (6)
C4 0.0371 (8) 0.0406 (8) 0.0323 (7) 0.0043 (6) 0.0011 (6) −0.0025 (6)
C5 0.0419 (8) 0.0392 (8) 0.0391 (8) 0.0003 (6) 0.0057 (6) −0.0022 (6)
C6 0.0446 (8) 0.0357 (8) 0.0395 (8) 0.0018 (6) −0.0007 (6) −0.0010 (6)
C7 0.0411 (8) 0.0301 (7) 0.0368 (7) 0.0008 (6) 0.0053 (6) 0.0005 (6)
C8 0.0354 (7) 0.0314 (7) 0.0339 (7) 0.0027 (6) 0.0076 (5) −0.0027 (5)
C9 0.0439 (8) 0.0386 (8) 0.0350 (7) −0.0010 (6) 0.0076 (6) 0.0011 (6)
C10 0.0547 (9) 0.0361 (8) 0.0491 (9) −0.0080 (7) 0.0136 (7) 0.0034 (6)
C11 0.0411 (8) 0.0418 (8) 0.0531 (9) −0.0100 (7) 0.0107 (7) −0.0105 (7)
C12 0.0348 (7) 0.0454 (8) 0.0406 (8) 0.0022 (6) 0.0046 (6) −0.0080 (6)
C13 0.0408 (8) 0.0344 (7) 0.0362 (7) 0.0032 (6) 0.0041 (6) 0.0012 (6)
C14 0.0527 (10) 0.0672 (11) 0.0513 (10) −0.0003 (9) −0.0081 (8) −0.0085 (8)

(I) (E)-N'-(2-Hydroxy-5-methylbenzylidene)isonicotinohydrazide . Geometric parameters (Å, º)

O1—C6 1.2140 (17) C5—H5 0.9300
O2—H2O 0.8200 C7—H7 0.9300
O2—C9 1.3566 (17) C7—C8 1.4476 (19)
N1—C1 1.3371 (19) C8—C9 1.4083 (19)
N1—C5 1.3353 (18) C8—C13 1.3969 (18)
N2—H2N 0.8600 C9—C10 1.383 (2)
N2—N3 1.3687 (16) C10—H10 0.9300
N2—C6 1.3547 (17) C10—C11 1.377 (2)
N3—C7 1.2720 (17) C11—H11 0.9300
C1—H1 0.9300 C11—C12 1.387 (2)
C1—C2 1.376 (2) C12—C13 1.384 (2)
C2—H2 0.9300 C12—C14 1.505 (2)
C2—C3 1.3878 (19) C13—H13 0.9300
C3—C4 1.382 (2) C14—H14A 0.9600
C3—C6 1.5011 (19) C14—H14B 0.9600
C4—H4 0.9300 C14—H14C 0.9600
C4—C5 1.3808 (19)
C9—O2—H2O 109.5 C8—C7—H7 120.2
C5—N1—C1 116.49 (12) C9—C8—C7 121.54 (12)
N3—N2—H2N 122.1 C13—C8—C7 120.15 (12)
C6—N2—H2N 122.1 C13—C8—C9 118.31 (12)
C6—N2—N3 115.88 (12) O2—C9—C8 122.64 (13)
C7—N3—N2 120.30 (12) O2—C9—C10 118.14 (13)
N1—C1—H1 118.1 C10—C9—C8 119.21 (13)
N1—C1—C2 123.76 (13) C9—C10—H10 119.6
C2—C1—H1 118.1 C11—C10—C9 120.72 (14)
C1—C2—H2 120.5 C11—C10—H10 119.6
C1—C2—C3 119.05 (14) C10—C11—H11 119.1
C3—C2—H2 120.5 C10—C11—C12 121.76 (13)
C2—C3—C6 117.42 (13) C12—C11—H11 119.1
C4—C3—C2 117.92 (13) C11—C12—C14 120.79 (14)
C4—C3—C6 124.62 (12) C13—C12—C11 117.23 (13)
C3—C4—H4 120.6 C13—C12—C14 121.98 (15)
C5—C4—C3 118.81 (13) C8—C13—H13 118.6
C5—C4—H4 120.6 C12—C13—C8 122.74 (13)
N1—C5—C4 123.95 (14) C12—C13—H13 118.6
N1—C5—H5 118.0 C12—C14—H14A 109.5
C4—C5—H5 118.0 C12—C14—H14B 109.5
O1—C6—N2 122.27 (13) C12—C14—H14C 109.5
O1—C6—C3 121.01 (13) H14A—C14—H14B 109.5
N2—C6—C3 116.73 (12) H14A—C14—H14C 109.5
N3—C7—H7 120.2 H14B—C14—H14C 109.5
N3—C7—C8 119.63 (13)
O2—C9—C10—C11 −177.73 (14) C5—N1—C1—C2 −0.3 (2)
N1—C1—C2—C3 −0.2 (2) C6—N2—N3—C7 −177.70 (13)
N2—N3—C7—C8 −179.03 (12) C6—C3—C4—C5 −177.39 (13)
N3—N2—C6—O1 3.1 (2) C7—C8—C9—O2 −0.7 (2)
N3—N2—C6—C3 −176.69 (12) C7—C8—C9—C10 179.63 (13)
N3—C7—C8—C9 4.8 (2) C7—C8—C13—C12 178.65 (13)
N3—C7—C8—C13 −174.87 (13) C8—C7—N3—N2 −179.03 (12)
C1—N1—C5—C4 0.7 (2) C8—C9—C10—C11 1.9 (2)
C1—C2—C3—C4 0.2 (2) C9—C8—C13—C12 −1.0 (2)
C1—C2—C3—C6 177.94 (13) C9—C10—C11—C12 −1.5 (2)
C2—C3—C4—C5 0.1 (2) C10—C11—C12—C13 −0.2 (2)
C2—C3—C6—O1 −19.9 (2) C10—C11—C12—C14 178.89 (15)
C2—C3—C6—N2 159.99 (13) C11—C12—C13—C8 1.5 (2)
C3—C4—C5—N1 −0.6 (2) C13—C8—C9—O2 178.91 (14)
C4—C3—C6—O1 157.69 (16) C13—C8—C9—C10 −0.7 (2)
C4—C3—C6—N2 −22.5 (2) C14—C12—C13—C8 −177.64 (14)

(I) (E)-N'-(2-Hydroxy-5-methylbenzylidene)isonicotinohydrazide . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N1/C1–C5 ring.

D—H···A D—H H···A D···A D—H···A
O2—H2O···N3 0.82 1.87 2.5857 (16) 145
N2—H2N···N1i 0.86 2.19 3.0232 (17) 164
C10—H10···Cg1ii 0.93 2.85 3.5259 (17) 130

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+1/2, y−1/2, −z+3/2.

(II) (E)-N'-(5-Fluoro-2-hydroxybenzylidene)isonicotinohydrazide . Crystal data

C13H10FN3O2 F(000) = 536
Mr = 259.24 Dx = 1.441 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.9195 (3) Å Cell parameters from 9934 reflections
b = 10.1128 (3) Å θ = 3.1–28.5°
c = 13.6254 (4) Å µ = 0.11 mm1
β = 103.481 (1)° T = 296 K
V = 1195.16 (6) Å3 Block, colourless
Z = 4 0.32 × 0.26 × 0.26 mm

(II) (E)-N'-(5-Fluoro-2-hydroxybenzylidene)isonicotinohydrazide . Data collection

Bruker APEX2 D8 QUEST CMOS diffractometer 2848 independent reflections
Radiation source: microfocus sealed x-ray tube, Incoatec Iµus 2128 reflections with I > 2σ(I)
GraphiteDouble Bounce Multilayer Mirror monochromator Rint = 0.039
Detector resolution: 10.5 pixels mm-1 θmax = 27.9°, θmin = 3.1°
φ and ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −13→13
Tmin = 0.685, Tmax = 0.746 l = −17→17
31833 measured reflections

(II) (E)-N'-(5-Fluoro-2-hydroxybenzylidene)isonicotinohydrazide . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.282P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.26 e Å3
2848 reflections Δρmin = −0.29 e Å3
174 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.020 (3)
Primary atom site location: structure-invariant direct methods

(II) (E)-N'-(5-Fluoro-2-hydroxybenzylidene)isonicotinohydrazide . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(II) (E)-N'-(5-Fluoro-2-hydroxybenzylidene)isonicotinohydrazide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.20524 (13) −0.04313 (11) 0.46463 (10) 0.0868 (4)
O1 0.82356 (13) 0.59703 (11) 0.44402 (7) 0.0572 (3)
O2 0.53778 (15) 0.31773 (13) 0.30688 (8) 0.0650 (3)
H2 0.5959 0.3608 0.3508 0.097*
N1 1.11088 (14) 0.82083 (13) 0.75798 (9) 0.0497 (3)
N2 0.75299 (13) 0.47336 (11) 0.56431 (8) 0.0404 (3)
H2A 0.7633 0.4582 0.6276 0.048*
N3 0.65442 (13) 0.39828 (11) 0.49277 (8) 0.0410 (3)
C1 1.12858 (18) 0.81537 (17) 0.66408 (12) 0.0553 (4)
H1 1.2031 0.8689 0.6466 0.066*
C2 1.04204 (17) 0.73427 (16) 0.59110 (11) 0.0497 (4)
H2B 1.0577 0.7346 0.5260 0.060*
C3 0.93237 (14) 0.65288 (12) 0.61510 (9) 0.0355 (3)
C4 0.91374 (17) 0.65656 (14) 0.71277 (10) 0.0429 (3)
H4 0.8417 0.6026 0.7327 0.052*
C5 1.00507 (19) 0.74261 (15) 0.78056 (10) 0.0502 (4)
H5 0.9910 0.7455 0.8460 0.060*
C6 0.83297 (15) 0.57142 (13) 0.53241 (9) 0.0376 (3)
C7 0.57486 (15) 0.31041 (13) 0.52504 (10) 0.0413 (3)
H7 0.5825 0.3020 0.5940 0.050*
C8 0.47255 (15) 0.22351 (13) 0.45483 (10) 0.0408 (3)
C9 0.46263 (16) 0.22688 (15) 0.35051 (11) 0.0457 (3)
C10 0.37199 (18) 0.13466 (17) 0.28799 (13) 0.0569 (4)
H10 0.3694 0.1346 0.2194 0.068*
C11 0.28665 (18) 0.04408 (16) 0.32564 (14) 0.0597 (4)
H11 0.2260 −0.0174 0.2834 0.072*
C12 0.29224 (18) 0.04568 (15) 0.42667 (15) 0.0567 (4)
C13 0.38397 (17) 0.13144 (15) 0.49236 (12) 0.0499 (4)
H13 0.3870 0.1282 0.5610 0.060*

(II) (E)-N'-(5-Fluoro-2-hydroxybenzylidene)isonicotinohydrazide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0769 (7) 0.0678 (7) 0.1118 (9) −0.0293 (6) 0.0143 (7) 0.0139 (6)
O1 0.0767 (7) 0.0616 (7) 0.0271 (5) −0.0163 (6) −0.0006 (5) −0.0004 (4)
O2 0.0697 (8) 0.0754 (8) 0.0453 (6) −0.0252 (6) 0.0041 (5) −0.0007 (6)
N1 0.0495 (7) 0.0494 (7) 0.0426 (7) 0.0033 (6) −0.0048 (5) −0.0125 (5)
N2 0.0452 (6) 0.0399 (6) 0.0297 (5) −0.0020 (5) −0.0040 (4) −0.0007 (4)
N3 0.0404 (6) 0.0380 (6) 0.0379 (6) 0.0007 (5) −0.0044 (5) −0.0031 (5)
C1 0.0519 (9) 0.0616 (10) 0.0502 (9) −0.0136 (8) 0.0077 (7) −0.0123 (7)
C2 0.0530 (8) 0.0598 (9) 0.0356 (7) −0.0099 (7) 0.0092 (6) −0.0088 (6)
C3 0.0382 (7) 0.0351 (6) 0.0291 (6) 0.0058 (5) −0.0007 (5) −0.0021 (5)
C4 0.0532 (8) 0.0409 (7) 0.0324 (6) 0.0015 (6) 0.0051 (6) −0.0022 (5)
C5 0.0662 (9) 0.0509 (8) 0.0294 (6) 0.0075 (8) 0.0026 (6) −0.0066 (6)
C6 0.0418 (7) 0.0377 (7) 0.0285 (6) 0.0027 (6) −0.0011 (5) −0.0016 (5)
C7 0.0413 (7) 0.0394 (7) 0.0393 (7) 0.0042 (6) 0.0013 (6) −0.0011 (6)
C8 0.0348 (7) 0.0358 (7) 0.0475 (7) 0.0039 (5) 0.0008 (5) −0.0004 (6)
C9 0.0396 (7) 0.0462 (8) 0.0469 (8) −0.0005 (6) 0.0016 (6) −0.0020 (6)
C10 0.0514 (9) 0.0605 (10) 0.0525 (9) −0.0037 (8) −0.0006 (7) −0.0119 (7)
C11 0.0464 (8) 0.0472 (9) 0.0759 (12) −0.0042 (7) −0.0051 (8) −0.0132 (8)
C12 0.0435 (8) 0.0398 (8) 0.0824 (12) −0.0038 (6) 0.0060 (8) 0.0060 (7)
C13 0.0452 (8) 0.0445 (8) 0.0572 (9) 0.0022 (6) 0.0060 (7) 0.0051 (7)

(II) (E)-N'-(5-Fluoro-2-hydroxybenzylidene)isonicotinohydrazide . Geometric parameters (Å, º)

F1—C12 1.3651 (19) C3—C6 1.5061 (17)
O1—C6 1.2154 (15) C4—H4 0.9300
O2—H2 0.8200 C4—C5 1.387 (2)
O2—C9 1.3537 (18) C5—H5 0.9300
N1—C1 1.3263 (19) C7—H7 0.9300
N1—C5 1.322 (2) C7—C8 1.4537 (18)
N2—H2A 0.8600 C8—C9 1.404 (2)
N2—N3 1.3783 (15) C8—C13 1.393 (2)
N2—C6 1.3513 (17) C9—C10 1.388 (2)
N3—C7 1.2775 (18) C10—H10 0.9300
C1—H1 0.9300 C10—C11 1.365 (2)
C1—C2 1.378 (2) C11—H11 0.9300
C2—H2B 0.9300 C11—C12 1.366 (2)
C2—C3 1.375 (2) C12—C13 1.372 (2)
C3—C4 1.3796 (18) C13—H13 0.9300
C9—O2—H2 109.5 N2—C6—C3 115.07 (11)
C5—N1—C1 116.85 (12) N3—C7—H7 119.7
N3—N2—H2A 120.8 N3—C7—C8 120.53 (13)
C6—N2—H2A 120.8 C8—C7—H7 119.7
C6—N2—N3 118.31 (11) C9—C8—C7 122.23 (13)
C7—N3—N2 116.98 (11) C13—C8—C7 119.03 (13)
N1—C1—H1 118.4 C13—C8—C9 118.72 (13)
N1—C1—C2 123.25 (15) O2—C9—C8 122.70 (13)
C2—C1—H1 118.4 O2—C9—C10 117.61 (14)
C1—C2—H2B 120.2 C10—C9—C8 119.68 (14)
C3—C2—C1 119.64 (13) C9—C10—H10 119.5
C3—C2—H2B 120.2 C11—C10—C9 121.06 (15)
C2—C3—C4 117.76 (12) C11—C10—H10 119.5
C2—C3—C6 118.48 (11) C10—C11—H11 120.7
C4—C3—C6 123.65 (12) C10—C11—C12 118.57 (14)
C3—C4—H4 120.8 C12—C11—H11 120.7
C3—C4—C5 118.37 (14) F1—C12—C11 118.92 (15)
C5—C4—H4 120.8 F1—C12—C13 118.30 (16)
N1—C5—C4 124.13 (13) C11—C12—C13 122.77 (15)
N1—C5—H5 117.9 C8—C13—H13 120.5
C4—C5—H5 117.9 C12—C13—C8 119.09 (15)
O1—C6—N2 123.74 (12) C12—C13—H13 120.5
O1—C6—C3 121.15 (12)
F1—C12—C13—C8 −179.45 (13) C4—C3—C6—N2 −18.13 (18)
O2—C9—C10—C11 −176.72 (15) C5—N1—C1—C2 0.6 (2)
N1—C1—C2—C3 −0.8 (3) C6—N2—N3—C7 −176.78 (12)
N2—N3—C7—C8 −177.61 (11) C6—C3—C4—C5 −175.40 (12)
N3—N2—C6—O1 −0.3 (2) C7—C8—C9—O2 −5.4 (2)
N3—N2—C6—C3 177.26 (10) C7—C8—C9—C10 174.98 (13)
N3—C7—C8—C9 3.5 (2) C7—C8—C13—C12 −177.30 (13)
N3—C7—C8—C13 −178.08 (12) C8—C7—N3—N2 −177.61 (11)
C1—N1—C5—C4 0.2 (2) C8—C9—C10—C11 2.9 (2)
C1—C2—C3—C4 0.1 (2) C9—C8—C13—C12 1.1 (2)
C1—C2—C3—C6 176.36 (13) C9—C10—C11—C12 −0.1 (2)
C2—C3—C4—C5 0.6 (2) C10—C11—C12—F1 178.91 (14)
C2—C3—C6—O1 −16.5 (2) C10—C11—C12—C13 −2.3 (2)
C2—C3—C6—N2 165.85 (12) C11—C12—C13—C8 1.7 (2)
C3—C4—C5—N1 −0.8 (2) C13—C8—C9—O2 176.21 (13)
C4—C3—C6—O1 159.53 (14) C13—C8—C9—C10 −3.4 (2)

(II) (E)-N'-(5-Fluoro-2-hydroxybenzylidene)isonicotinohydrazide . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N1/C1–C5 ring.

D—H···A D—H H···A D···A D—H···A
O2—H2···N3 0.82 1.92 2.6329 (15) 145
N2—H2A···N1i 0.86 2.19 2.8889 (15) 138
C10—H10···O1ii 0.93 2.51 3.2573 (18) 138
C11—H11···Cg1iii 0.93 2.98 3.8917 (18) 168

Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x−1, −y+1/2, z−1/2.

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bendova, P., Mackova, E., Haskova, P., Vavrova, A., Jirkovsky, E., Sterba, M., Popelova, O., Kalinowski, D. S., Kovarikova, P., Vavrova, K., Richardson, D. R. & Simunek, T. (2010). Chem. Res. Toxicol. 23, 1105–1114. [DOI] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Carter, K. P., Young, A. M. & Palmer, A. E. (2014). Chem. Rev. 114, 4564–4601. [DOI] [PMC free article] [PubMed]
  6. Chumakov, Y. M., Antosyak, B. Y., Tsapkov, V. I. & Samus, N. M. (2001). J. Struct. Chem. 42, 335–339.
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Hrušková, K., Kovaříková, P., Bendová, P., Hašková, P., Macková, E., Stariat, J., Vávrová, A., Vávrová, K. & Šimůnek, T. (2011). Chem. Res. Toxicol. 24, 290–302. [DOI] [PubMed]
  11. Hrušková, K., Potůčková, E., Hergeselová, T., Liptáková, L., Hašková, P., Mingas, P., Kovaříková, P., Šimůnek, T. & Vávrová, K. (2016). Eur. J. Med. Chem. 120, 97–110. [DOI] [PubMed]
  12. Jansová, H., Macháček, M., Wang, Q., Hašková, P., Jirkovská, A., Potůčková, E., Kielar, F., Franz, K. J. & Šimůnek, T. (2014). Free Radical Biol. Med. 74, 210–221. [DOI] [PMC free article] [PubMed]
  13. Kargar, H., Kia, R., Akkurt, M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o2982. [DOI] [PMC free article] [PubMed]
  14. Sedaghat, T., Yousefi, M., Bruno, G., Rudbari, H. A., Motamedi, H. & Nobakht, V. (2014). Polyhedron, 79, 88–96.
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  18. Yang, D.-S. (2006a). Acta Cryst. E62, o3755–o3756.
  19. Yang, D.-S. (2006b). Acta Cryst. E62, o3792–o3793.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) Global, I, II. DOI: 10.1107/S2056989016009762/su5301sup1.cif

e-72-00980-sup1.cif (999.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016009762/su5301Isup2.hkl

e-72-00980-Isup2.hkl (164.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016009762/su5301Isup4.cdx

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016009762/su5301IIsup3.hkl

e-72-00980-IIsup3.hkl (156.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016009762/su5301Isup5.cml

Supporting information file. DOI: 10.1107/S2056989016009762/su5301IIsup6.cml

CCDC references: 1485834, 1485833

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES